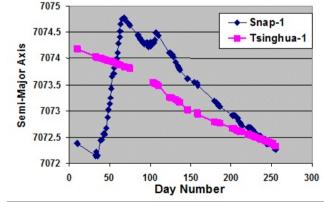
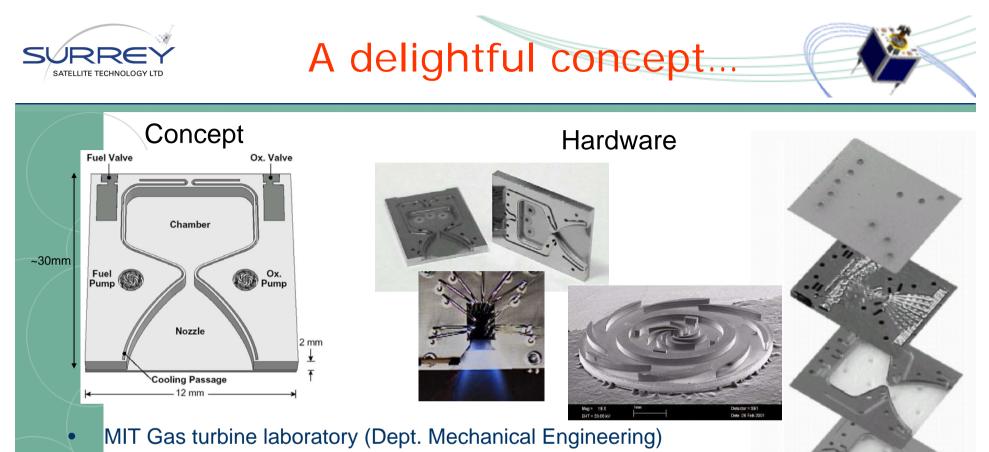


Adam M. Baker, Sanjay Mistry, Arnaud Lecuyot, Doug Liddle (SSTL) Johan Köhler (Ångström Space Technology Centre)

- SSTL's approach is to challenge the conventional definition of 'space-qualified' parts by testing MEMS components alongside existing heritage subsystems in small spacecraft missions, providing heritage by experience without the need for time consuming and costly qualification programmes.
- Ground developments & space flight data for miniaturised AODCS
 equipment on SSTL low-cost satellites.
 - Miniature kick-motor propulsion system (ESA support)
 - MEMS-based Inertial sensing
 - MEMS gyros (BILSAT, UoSat-12)
 - MEMS Inertial Measurement Units (GSTB-V2/A)
- How NOT to gain the benefits of MEMS in space....
- A brief look at what's next...

MINIATURISED PROPULSION




The need for MEMS propulsion

- SNAP example
 - Orbit raised to rendezvous with satellite
 - GPS used to update orbital elements
 - $-\Delta V$: 2m/s calc as required, 4m/s provided by prop system
 - Isp: 50s in cold mode (can be augmented to 100s if power available)
 - Still insufficient to offset orbit drag on low ballistic coefficient platform!

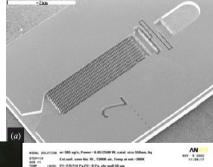
Funded by US Army, NASA, DARPA

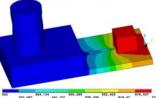
•

- 'Rocket Chip' 6 wafer design, integral cooling channels
 - O₂ / Ethanol or JP7/H202 propellants, Isp 300s target
 - Operation at 125Bar Pc, 15N thrust: T:W 1000:1 (SSME 100:1)
 - Microturbines for power generation, micropumps

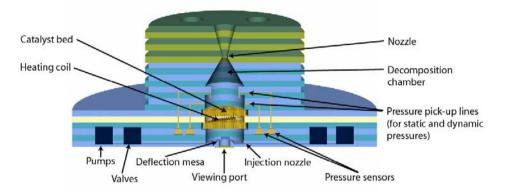
Target application if T:W 1000:1 feasible

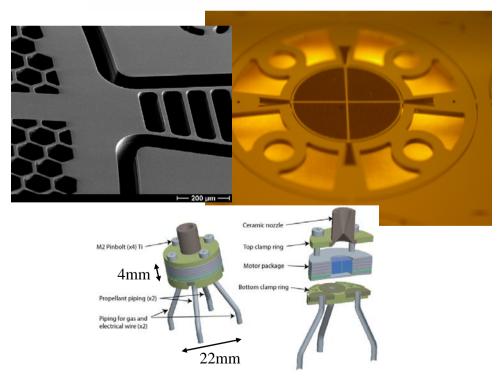
Launch vehicles as low as 15kg launch mass to LEO possible Other applications inc. UAVs, wide range of spacecraft


Micro 'kick' motor


- High level objectives
 - Compete on performance (scaled to smaller size) with a 1N hydrazine AOCS thruster
 - Aim for low recurring cost, as associated with MEMS component batches
 - Offer useful performance augmentation to 1-100kg satellite (Bolt-on kick motor)
 - Green propellants for easy testing / qualification / loading
 - Potential to be made in Si-based MEMS (but not mandated)
 - Scale-up at later date to MIT biprop performance goals

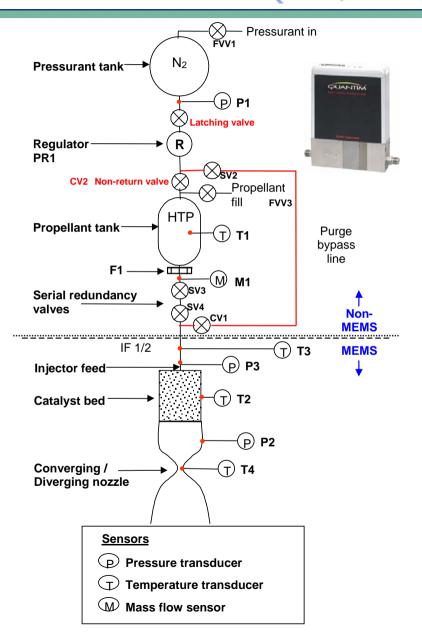
- MEMS Monopropellant thruster for NASA ST-x mission:
 - Thrust: 10-500 μN
 - Impulse Bit: 1-1000 µN-s
 - Specific Impulse targets:
 - 130 seconds (Hydrogen Peroxide)
 - 200 seconds (Hydrazine)
- Si with glass cover, inc. Nozzle, plenum, chamber and injector
- Monopropellants:
 - Hydrogen Peroxide, H_2O_2
 - Hydrazine, N₂H₄





Design process

- How did we get to current design?
 - Flat plate (traditional MEMS)
 v. vertically integrated architecture
 - Pressure tolerance
 - Various propellant options considered
 - Green priority to allow low cost testing
 - Hybrid motors also
 - No growth path
 - Cooling v. heating
 - Nozzle options
 - Ceramic v. Si chamber
 - Pumping of propellants rejected to unsuitability of MEMS pumps
 - Drove design to hybrid of MEMS cat. Chamber and conventional plumbing



Pumps & propellant feed

- TPF (Turbo-Pump-Fed) benefit in this system.
 - Turbopumps do not provide a greatly marked benefit due to the mass of commercialy available micropumps
 - A high flow / high ∆P MEMs
 micro pump would be beneficial
 - Low efficiency of rotary turbopumps do not help
 - Overall, we lean to a pressurised/blowdown system

Critical assessment

Performance – challenges

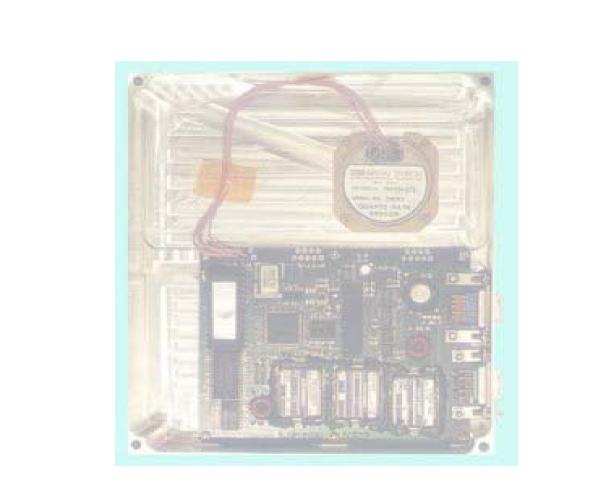
Leakage in vertically integrated design

Catalyst bed performance

- Difficult to test in a representative fashion
- Further catalyst development needed: Durability
- The hydrogen peroxide storage issue
 - OK for short (6mo.) missions
 - Evolved O2 and diluted H2O2 concentration for longer missions
 - Initial support from BNSC to develop low cost HTP storage tank with permeable liner
 - ESA Green propellants programme
- Performance figures
 - 375°C for 100s achieved once only: c*, Isp and Thrust not measured
 - 400°C achieved with silver gauze larger effective surface area (rougher)

Is MEMS the best way forward?

- Vertically integrated architecture does not lend itself well to mass production
 - Due to requirement to stack numerous layers together
- Conventional feed system does not enable benefits of microthruster to be realised
 - Additional development required (pumps, valves, tanks)
- Was the H_2O_2 propellant the best choice?
 - Alternatives were (less mature) ADN, HNF, HAN, or catalysed N2O.
- Is this competitive
 - Probably not yet potential is there


Cost:

- 600kEuro to date
- Parallel programme (Mechatronic)
- 120kEuro CCN to
 - Refine, model and mfr. Integrated assembly
 - Test, analyse, validate model
 - Reanalyse market and plan further development
- CCN takes us to TRL4
- Estimate further 600-1000kEuro to raise to TRL6

MEMS INERTIAL SENSING

Miniature AODCS at SSTL

- Attitude
 - –/ Precise attitude system
 - Attitude propagation
 - Fast open loop manoeuvres
 - Single or multiple axis system
 - Compatible with low cost
- Heritage
 - UoSAT-12 (QRS-11)
 - BILSAT (SIRRS-01)
 - 6 more ORS-11 on GSTB-V2/A
- Details
 - Based on SSTL interface unit
 - CAN interface
 - Raw 28V supply
- **Specifications**
 - ±50°/s range
 - 0.02°/s resolution
 - 0.002°/s drift
 - >60Hz Bandwidth

GPS

GyroChip

Controller

190

mm

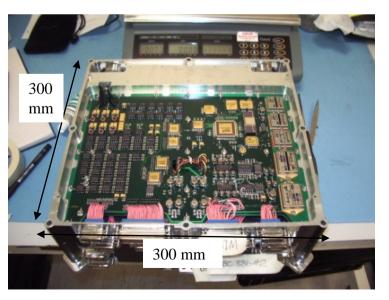
- SGR-05U (Cost:)
- Compact, COTS based surface mount PCB
 - Limited by antenna size.
 - Limited drive to reduce size further
- 20g, 0.5W
- Multiple antenna for orientation

UoSAT-12 gyro and controller

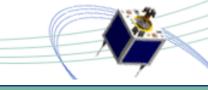
Why (MEMS) gyros?

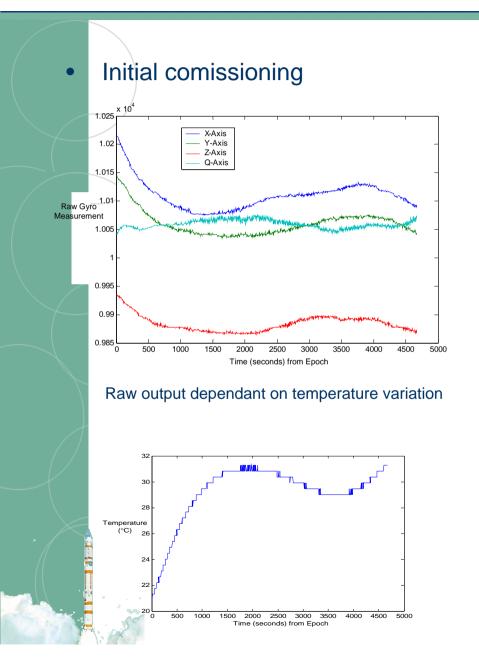
- UoSAT-12
 - Technology testing in anticipation of high resolution imaging missions
- BILSAT
 - Agility requirement requested by customer for high resolution and hyperspectral imaging
- GSTB-V2/A
 - Detumbling
 - Low performance sufficient
 - Low cost paramount, BOL useage only

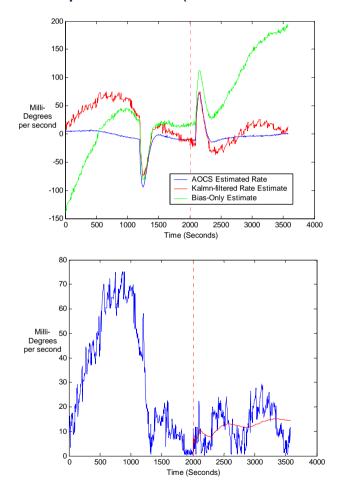
GSTB	Spec.	Actual
Rate Noise	0.005 deg/s	
Max. bias	<0.25deg/s	
Initial drift	<216 deg/hr ^{3/2}	
Steady bias drift	<20 deg/hr ^{3/2}	
Range	±10 deg/s	$> \pm 50$ deg/s
Mass	< 400g (6)	<240g
Power	2.4W for 3	<1.2
Lifetime	27 mth MEO	TBD



MEMS Gyros selected

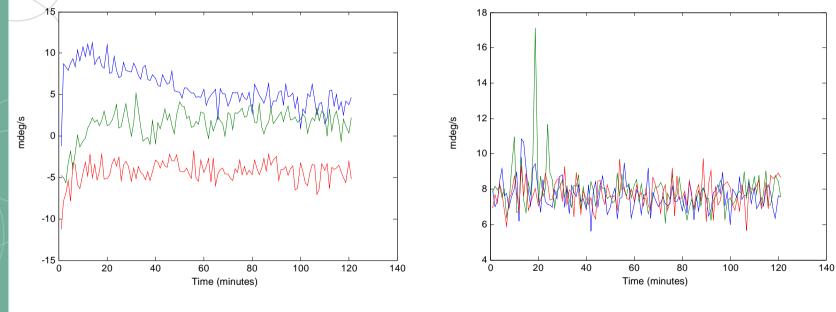

GSTB: Systron Donner
 QRS-11



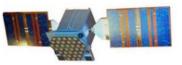


BILSAT flight data

 Following temperature & bias compensation (Kalman filtering)



X, Y, Z axes: estimated rates using gyro outputs and temperature valid for \geq 10 mins. before errors start to increase rapidly. Star Tracker updating required.



Attitude rate

RMS Errors

• GSTB-V2/A is currently in ESTEC Test Facility!

Mass is certainly NOT a driver for choosing MEMS gyros

- Conventional route
 - Magnetometer based for coarse /safe mode
 - Sun sensors
 - Star trackers

Integrated Route

- Integrated Gyros with Star Trackers (UniNav type)
- Added functionalities on Star Tracker
- Performance Issues
 - MEMS gyros so far not usable for precise ADCS
 - However SSTL is considering AST+MEMS gyros baseline for Hi Res Next generation missions

- ASTC's miniaturised magnetic attitude control system
 - Minimum integration (CAN)
- Sun sensors e.g. from DTU, TNO
 - On a case by case basis

Traditional Route: Steadily shrinking but little change in absolute cost. Not that competitive at module (subsystem) level

- In "production" missions, SSTL operates an ad-hoc, opportunistic, mission-based miniaturisation and use of MEMS in AOCS
- In "other" missions though, SSTL can propose flight demonstrations (see paper 03/10 from ESA 5th MNT Round Table)
- Miniaturised propulsion used successfully on SNAP
 Augmented versions on DMC
- MEMS Gyros used successfully on UoSAT-12, BILSAT
- MEMS gyros (others) to be used on GSTB-V2 in 2 months' time
- MEMS gyros use in Hi Res pointing in R&D
- Kick motor in R&D, critical assessment continuing
- SSTL considering AST/Gyros integration
 - Possibilities to test MEMS AOCS components on-board SSTL S/C