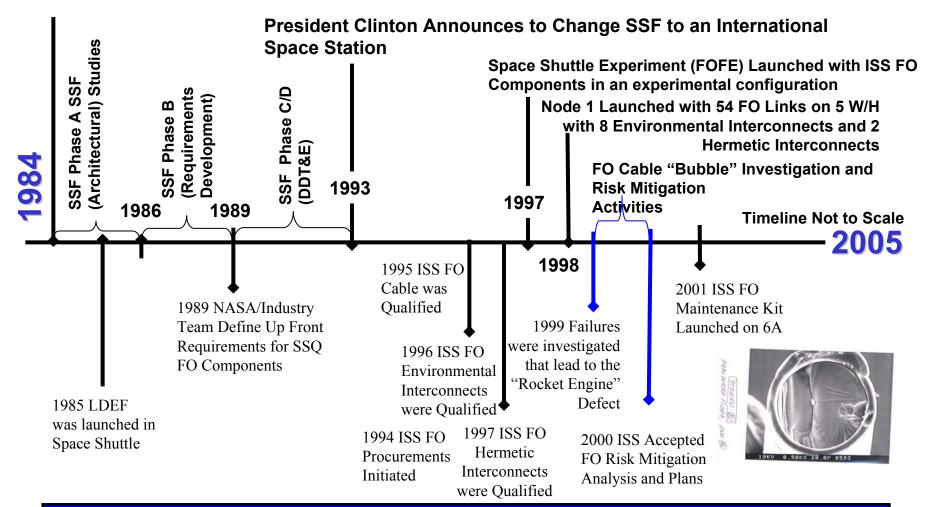
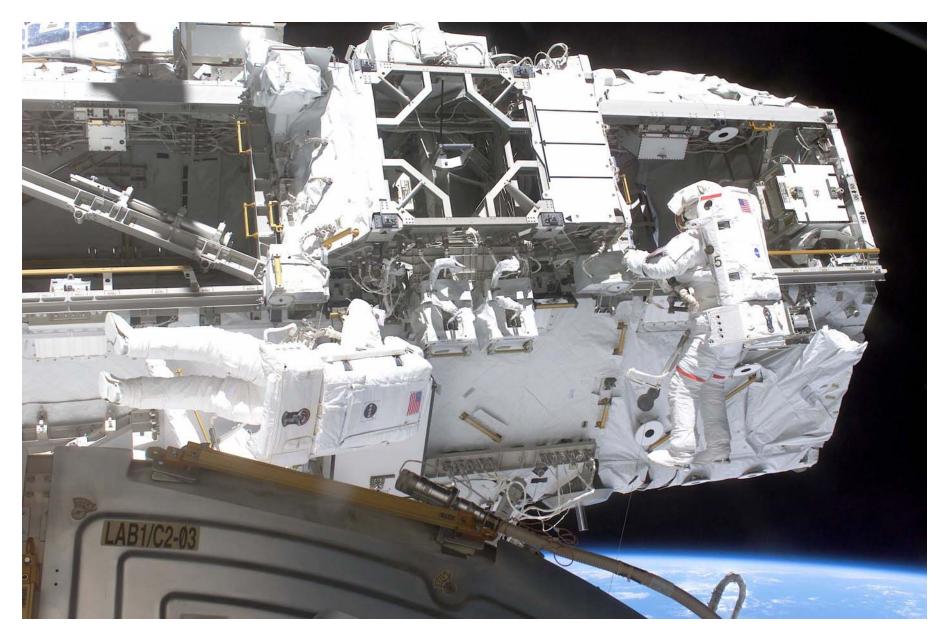
ISS Fiber Optic Link Development Lessons Learned Journey



David Gill October 3, 2005 ISS Journey to Utilize Fiber Optic Technology

HB Avionics/Electrical Systems (AES)


President Regan Announces Permanent Manned Space Vision

ISS was morphed from Space Station Freedom – Fiber Optics Technology was pushed into Vehicle Systems FO Components Embedded in ISS Systems (BOEING

- Caution and Warning System
 - Internal Audio
- Payload Data System
 - Internal and External Ethernet
- Video System
 - Internal and External
- Used in All American ISS Elements except the Primary Power System Elements
- Used on ESA and NASDA Elements
- Russian Elements did not use FO

FO Components Are Used on an S0 Element

Fiber Optic Components / Qualified Performance

HB Avionics/Electrical Systems (AES)

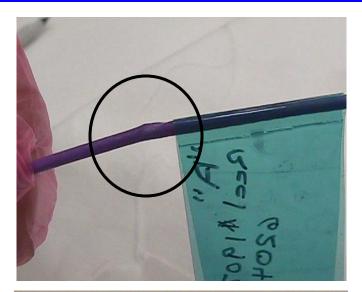
SSQ Spec	SSQ P/N	SSQ Approved Supplier	Description	Thermal / Environment	Mechanical Environment	Optical Perf. Req's
21635	NZGC	Amphenol	Circular Connectors	• <u>Thermal Shock</u> 25 cycles -100°C to +150°C	Durability 500 mate cycles NATC 1000 mate cycles NZGL	Ambient Loss Substitution Loss <
21636	NRP	ITT Cannon	Rack and Panel Connectors	• <u>Thermal Life</u> 21635: -115°C & 150°C for	<u>Maintenance Aging</u> 10 insert- removal cycles	0.4 dB change Induced Loss < 0.3 dB
21637	NU	G&H Technologies	Umbilical Connectors	500 hours 21636: 150°C for 500 hrs 21637: -115°C & 150°C for 250 hours • <u>Differential Temp</u> Δ150°C Low end -66°C max.	Salt Spray 21635 & 21637: 5% for 96 hrs 21636: 5% for 48 hrs 21637: Random Vibration 21635 & 3.5 min/axis, 1.0 G ² Hz. 21636: 3 min./axis, 43.7 G RMS 21637: 7 min/axis, 1.0G ² Hz	End of Life Loss Average = 0.85 dB Std. Dev. = 0.28

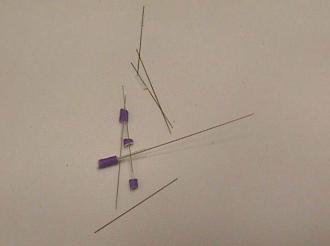
SSQ's Specifications were developed to define the requirements Common Components for ISS.

Fiber Optic W/H Component / Qualified Performance BOEING

SSQ Spec	SSQ P/N	SSQ Approved Supplier	Description	Thermal / Environment	Mechanical Environment	Optical Perf. Req's
21635	NZGC	Amphenol	Circular Connectors	• <u>Humidity</u> 21635: 240 Hours at 95%	<u>Mechanical Shock</u> 21635 & 21637: 3 per axis, 75G, 11	
21636	NRP	ITT Cannon	Rack and Panel Connectors	21636: 10 cy of 16 hours, 1 cy. = 40°C @ 94% RH and 40°C @	millisecond 21636: 3 axis, 30G, 11 millisecond	
21637	NU	G&H Technologies	Umbilical Connectors	 85% RH 21637: N/A for Fiber Optics Storage 21635: -100°C to +120°C at 10⁻⁵ torr 21636 & 21637 -115°C to 150°C 	Mating Forces (max) 21635: Shell<25, < 25 lbs.;	

Fiber Optic W/H Component / Qualified Performance


SSQ Spec	SSQ P/N	SSQ Approved Supplier	Description	Thermal / Environment	Mechanical Environment	Optical Perf. Req's
21654	NFOC	Brand Rex		• Fungus – none • Odor < 2.5 rating • Toxicity NHB 8060.1 • Vacuum Stability <1% mass loss, $1X10^{-6}$ torr @ $125^{\circ}C$ • Survival Life -135^{\circ}C & +157^{\circ}C @ $1X10^{-6}$ torr • Flammability $30\% O_2 70\% N_2 @ 10$ PSI, self-extinguishing • Thermal Shock 25 cycles,-100°C to $150^{\circ}C$ per MIL-STD 202 Method 107 • Radiation Resistance 118 Krads @ 0.1 Rad/sec	 Stippability – Jacket by hand Fiber coating > 2.5 KG Cyclic Flexing 2000 cy Crush 22.6 KG for 60 sec. Cable Bend 1.25"R Cable Weight 9KG/Km Jacket Shrinkage 0.4% 	Induced Loss < 0.3 dB Substitution Loss < 0.3 dB End of Life 6 dB/Km


ISS Fiber Optic Cable Lessons Learned

HB Avionics/Electrical Systems (AES)

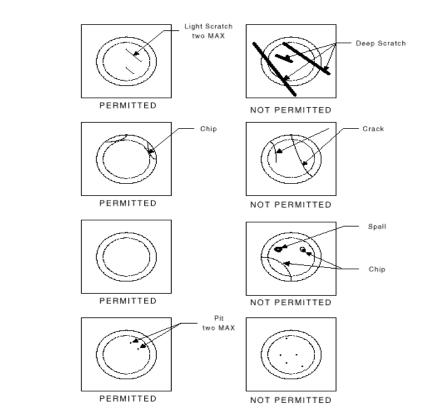
- Design Requirements
 - Fiber Glass Selection
 - Multimode
 - Radiation Hardened
 - Carbon Coated
 - Polyimide Coating
 - Jacket Design and Construction
 - Semi-loose Tube Construction
 - Strength Member
 - Jacket
- Acceptance Requirements
 - Dimensional Controls on Fiber/Coatings
 - Zero Defects on Coatings
 - Cable Visual Inspection
 - Optical Loss Testing
 - Packaging
- Qualification Requirements
 - Quantity of cable tested
 - Quality of the testing
- Supplier Management

SSQ 21654 FO Cable was Qualified Twice

Example of a Non-conformance Closure Post "Bubble" Alert

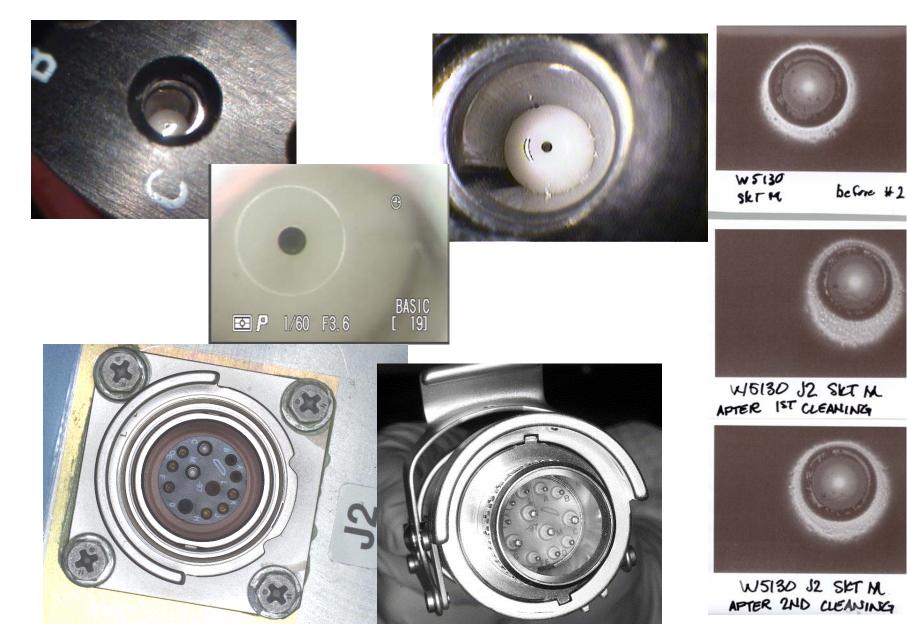
HB Avionics/Electrical Systems (AES)

•										
•	DISCREPANCY 05									
•	********** ENTER DEFECT DESCRIPTION BELOW: ************************************									
٠	14 REELS OF FIBER OPTIC CABLE WAS TESTED PER									
	PROCEDURE									
٠	1T80265 "C" WITH THE FOLLOWING RESULTS:									
٠	REEL #	GOOI	D PCS.	FT. DE	FECT PCS.	FT				
•	190764	4	135.44	3	3					
•			182.76	6	7					
٠	100501	0	0	SCRAP R	EEL TOTAL =	: 175.32				
•	100472	11	349.12	12	17.5					
٠	190837	5	442	4	4					
٠	190757	0	0	SCRAP R	EEL TOTAL =	: 320.56				
٠	100454	20	532.3	25	39.3					
٠	190759	0	0	SCRAP R	EEL TOTAL =	: 518.88				
•	190747	8	778.44	7	7					
•	190751	38	1257.44	47	68.5					
•	190859	2	208.60	1	1					
٠	190749	0	0	SCRAP R	EEL TOTAL =	1198.96				
•	• NOTE: TWO REELS # 190835 (308.52 FT) & # 190752 (863.32 FT) HAVE									
•	ZERO DEFECTS AND ARE COMPLETE AND ACCEPTABLE									
•										


• E.M. THOMSON A033310 A3-436 26NOV01

ISS Fiber Optic Interconnects Lessons Learned

HB Avionics/Electrical Systems (AES)


- Environmental Sealed Connector Design Requirements
 - Termini Materials
 - Tolerance Stacks different than Traditional Environmental Connectors with copper
 - Termini
 - Terminations
 - Cure Materials
 - Cure Profiles
 - Concave vs. PC Polish
 - Full fill vs end fill
 - Inspection and Verification
 - Insertion and Removal
 - Optical Testing
 - Number of Insert Configurations
 - Mating Forces and Torques
 - Backshells
 - Mixed Media Types
- Acceptance Requirements
 - Visual Inspections
 - Optical Loss Test
- Qualification Requirements
 - Quantity of configurations tested
 - Quality of the testing
- Supplier Management

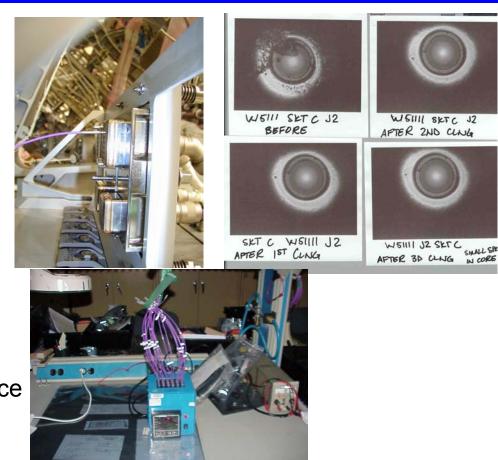
SSQ 21635, 21636 and 21637 Connectors included FO Capabilities

FO Termini and NZGL Environmental Connector Inserts

ISS Fiber Optic Interconnects Lessons Learned

- Hermetic Sealed Connector Design Requirements
 - Several Insert/Shell Size Configurations
 - Dimensions of small parts
 - Termini Materials and Seals & Processes
 - Full Fill vs End Fill
 - Inspection and Verification
 - Production Rework of Termini
- Acceptance Requirements
 - Verification of Polish Quality
 - Verification by Test
- Qualification Requirements
 - Quantity of configurations tested
 - Quality of the testing
- Supplier Management

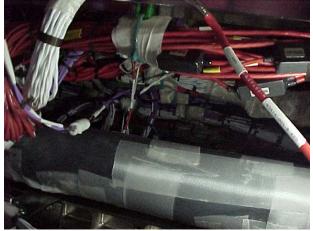
Only SSQ 21635 included Capabilities with Hermetic Sealed FO Termini



ISS Fiber Optic Wire Harness Assembly and Integration Lessons Learne more ING

HB Avionics/Electrical Systems (AES)

- Design Requirements
 - Bend Radii
 - Clamping
- Acceptance Requirements
 - Visuals
 - Testing
 - Post Installation
 - Functional Performance
 in System


Fiber Optics Were Embedded throughout ISS Elements

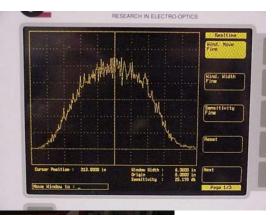
FO W/H Installed in US Lab

ISS Fiber Maintenance Kits

- All Fiber Maintenance Equipment is planned to be flown in 5 different kits/assemblies:
 - Optical Time Domain Reflectometer (OTDR) 1F92564-1
 - Reel Test Softpack Assembly 1F92761-1
 - Softpacks
 - FO Test Adapter Assembly (Patch Panel)
 - OTDR to Test Adapter Assembly patch cable
 - OTDR Power Cable (to 28VDC source)
 - Visual Fault Finder (low power HeNe laser)
 - ST/SSQ Cleaning Kits
 - Link Segment Softpack Assembly 1F92703-1
 - Softpacks
 - Fiber Replacement Links (quantity 36 links in 12 configurations)
 - Backshell Removal Tool
 - Backshell Plyers
 - Fiber Terminis Inseration/Extraction Tools (10)
 - Tie Wraps (100)
 - Test Adapter Softpack Assemblies 1F92676-X:
 - Softpack Assemblies (quantity 8) –1, -501, -503, -505, -507, -509, -511, -513
 - Test adapters (quantity 15) grouped at next assembly (softpack) in logical groups
 - EVA PDGF Contingency Wire Harness Assembly 1F92665-1

FO Tool Kit Development – Primary Fault Isolation Tools

Optical Time Domain Reflectometer (OTDR)



OTDR/Reel Patch Cable (QTY 3)

Reel Assembly acts as breakout box with 37 termini test capability

OTDR Signature of an SSQ Mate I/F

Flight Test Adapters (15 different in 8 differentSoftpack Assemblies))

Visual Fault Finder (VFF)

FO Tool Kit Development – Primary Contingency Tools

HB Avionics/Electrical Systems (AES)

Backshell Holding Tool 2



Backshell Holding Tool 1

Terminated Flight Links (QTY 36 in 12 Configurations stored In four diffent low level softpacks)

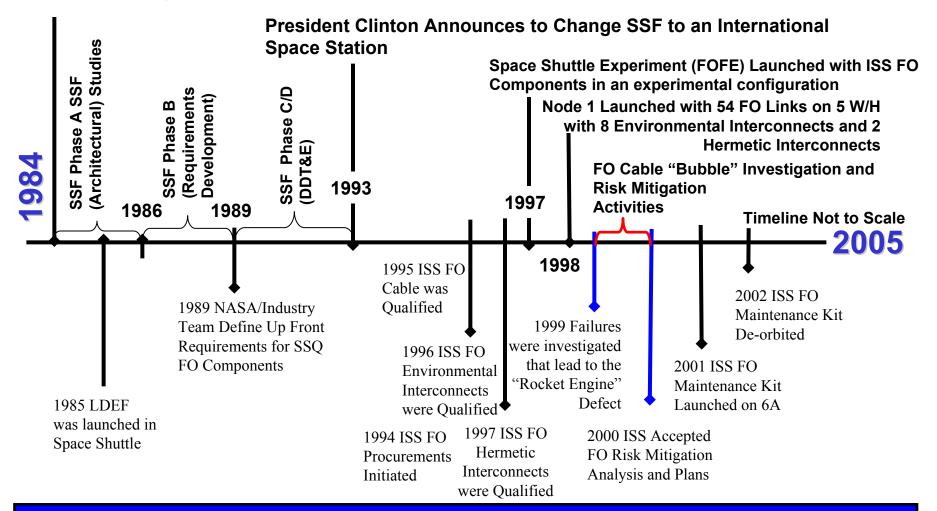
Multi-purpose EVA PDGF Contingency Cable

Insertion/Extraction Tools (QTY 10)

FO Tool Kit Development

- 4/00 ATP for OTDR Development
- 5/00 OTDR Requirements Developed
- 7/00 ATP for FO Tool Kit Development
- 9/00 FO Tool Kit Requirements Developed
- 11/00 OTDR & FO Tool Kit Prototypes Completed
- 11/00 OTDR Outgas
- 10/00 OTDR Radiation Testing
- 12/00 FO Tool Kit Prototype Testing Initiated
- 12/00 PDGF Crew Walkdown with installation scenarios
- 12/00 OTDR Burn-in Testing
- 01-01 OTDR Vibration Testing
- 01/01 OTDR Thermal Cycling Testing
- 12/00 3/01 FO Cable Functional ATPs
- 3/01 Electrical Cable (28VDC) Functional ATP
- 1-3/01 Other COTS tools and miscellaneous Outgassed
- 3/16/01 Kit Sharp Edge Inspection
- 3/16/01 Kit Connector Fit Checks (IVA OTDR, Patch Cables, Reel, and all test adapters
- 3/20/01 Crew Walkdown and Bench Review
- 3/23/01 Stowage in MPLM Racks
- 3/26/01 Equipment Stowed in MPLM
- 3/26/01 Development Equipment used in Flight-like System Level Testing (still ongoing as of 6/9/01)
- 4/19/01 6A Launch
- 6/12/01 Operations Training Session
 - FO Tool Kit Deorbited
 - FO Tool Kit Placed in KSC Stores

FO Tool Kit Prototype Test Set


Crew Bench Review 3/20/01

ISS Journey to Utilize Fiber Optic Technology

HB Avionics/Electrical Systems (AES)

President Regan Announces Permanent Manned Space Vision

As of September 2005, ISS has experienced 100% Success of Fiber Optic Components and there are well over a thousand links on orbit in operation