

Radiation Hardness Assessment of DFB and Widely Tunable Lasers

ESA Contract No.: 17884/03

Date: 05/10/2005

Authors: Tom Farrell, Michael Todd

Overview

- Evaluate radiation hardness of emerging laser technologies – DFB, DBR, SG-DBR.
- Examine: threshold, wavelength, SMSR, linewidth, modulation.
- Proton irradiation
 - 1) 2-year LEO, 4mm Al shielding Energy = 10 MeV Fluence = 4x10⁹ cm⁻²
 - 2) High energy exposure Energy = 50 MeVFluence = $2 \times 10^{13} \text{ cm}^{-2}$

Selected lasers

Туре	Package	Wavelength
DFB	TO-8 w/ TEC	935nm
DFB	TO-9 No TEC	935nm
DFB	Butterfly	1550nm
DBR	Butterfly	1550nm
SG-DBR	Butterfly	1550nm

- 2 batches of lasers for both low- and high-energy irradiation
- In situ testing of DFB and DBR. Results shown here.
- Lasers exposed to high-energy protons are still too active to return even after 7 months.

Radiation testing On Site Pictures

Threshold Deterioration (DFB)

10 MeV

Threshold Deterioration (DBR)

10 MeV

Wavelength Shift (DFB)

10 MeV

DBR Modal Structure

Mode Jump Movement (DBR)

10 MeV

Radiation Assessment

- The tests indicate minimal deterioration of tunable lasers at low exposure (10 MeV).
- Modest degradation in the lasing threshold of both device types at high exposures.
- Inceasing wavelength instability (10pm) of DFB with increasing exposure (>1x10¹³ cm⁻², 50 MeV).
- Modal structure of the DBR laser is preserved despite high energy exposures.
- Final analysis is not completed. Expected Nov 2005.