

Optically Interconnected Computing at Heriot-Watt

G.A. Russell, C.J. Moir, R. Gil-Otero, A. McCarthy, S. Kumpatla, S. Brown and J.F. Snowdon

Optically Interconnected Computing (OIC) Group, Heriot-Watt University, Edinburgh

http://www.optical-computing.co.uk

OIC Group Research

http://www.optical-computing.co.uk

Partners

- BAE SYSTEMS BAe Systems, UK
 - British Telecom, UK
- 🤛 Conjunct, UK
 - Ecole Superieure d'Electricite (SUPELEC), France
 - ILFA GmbH, Germany
- Imperial College London, UK
 - Leeds University, UK
- SIEMENS Siemens Business Services GmbH & Co. OHG, Germany
- sgi Silicon Graphics Inc., UK
- Swiss Federal Institute of Technology (ETHZ), Switzerland
- THALES THALES Communications (TCFR), France
 - Universität Gesamthochschule Paderborn, Germany
 - University of Hagen, Germany
 - Xilinx, USA

Demonstrators

SCIOS Sorting Demonstrator

- Batcher's Bitonic Sort
- The architecture of the demonstrator utilises optoelectronics exploiting non-local interconnection: in this case the perfect Optical relay shuffle.
- The data to be sorted are entered sequentially into the processing loop through electrical I/O.

SCIOS Demonstrator

HERIC

WAT

The SPOEC Project

- A free-space optically connected crossbar demonstrator with Tbit/s I/O to Si.
- Motivation:
 - Interconnect Bottleneck
- Features:
 - Hybrid Si/InGaAs smartpixel logic.
 - Optical clock distribution.
 - Header decoding in silicon.
 - 8×8 VCSEL array input.

SPOEC System Overview

Assembled Demonstrator

Optoelectronic Neural Networks

- Neural network scalability limited in silicon.
- Free-space optics can be used to perform interconnection.
- Optoelectronics allows scaleable networks.
- Input summation is also done in an inherently analogue manner.
- Noise added naturally.

- DOE provides a shift invariant inhibitory interconnect pattern.
- Neuron input summation is the total power falling on a detector.

System Overview

Direct Write, Multi-level Waveguides

STAR 3D Lightwave Circuits

 "Optical wiring" capability for high density integration of active optoelectronic devices and packaging to parallel fibre I/O.

STAR 3DLC Test Waveguides

High Speed Optoelectronic Memory System (HOLMS)

- •European Commission FW5 Project
- •Low latency memory architecture
- •Multiple memory banks with optical fan-in/-out

Memory Architecture

High Speed Optoelectronic Memory System (HOLMS)

- •Test bed for multiple optical technologies and packaging
 - •Fibre
 - •PIFSO
 - •Waveguide

HOLMS MCM

Programmable Optoelectronic Computing Architecture (POCA)

- •Investigate reconfigurable logic (FPGAs) with optical I/O
- •Logic required for data recovery and error recovery
- Latency for added logic
- •Behavioural model of optoelectronic level for simulation

. –	_	_		-					
	A.	Ν	×.				<u>] </u>		
			N-				ם מ		
	J.			17					
	5			V I					
	2								
I A		<u>8</u> .1		8 .			┛╙╙		
	21	3	۳I 🛛	S.					
ΗZ	Ň.	8	21				ם ם		
	æ	ĕ.,]: []: [
	77.					_;; L _,, r			
	<u>.</u>								
		Ē			Device Utilization Summary				
					Logic Utilization	Used	Available	Utilization	Note(s)
İ 🗅					Number of Slice Flip Flops	210	3,840	5%	
			5	5	Number of 4 input LUTs	235	3,840	6%	
					Logic Distribution				
		Ľ	Ц	ĽĽ	Number of occupied Slices	205	1,920	10%	
				Ð	Number of Slices containing only related logic	205	205	100%	
					Number of Slices containing unrelated logic	0	205	0%	
					Total Number 4 input LUTs	321	3,840	8%	
					Number used as logic	235			
					Number used as a route-thru	2			
			ן בק		Number used for Dual Port RAMs	16			
					Number used for 32x1 RAMs	52			
	N :	ı.		57	Number used as Shift registers	16			
	j.	i i i i i			Number of bonded IOBs	5	173	2%	
		Ľ	┢╼┛╢	Į L	IOB Flip Flops	2			
					Number of Block RAMs	1	12	8%	
			Д	Ъ	Number of GCLKs	4	8	50%	
			$\overline{\mathbf{h}}$	I,	Number of DCMs	3	4	75%	
			Ľ,		Total aminulate acts agent for design	1 09 757			
					Additional ITAC gate count for DBc	96,151			

POCA 2

•Virtex 2 Pro @ 320MHz

•Rx -> Parity Check -> Input Buffer -> Output Buffer -> Parity Calc -> Tx

•165ns latency = 52 clock cycles

Technologies

Rapid prototyping of optomechanical structures

Structures has been made using a fast 3D printer which creates the models directly from digital data in hours

Real system

Bonding

- Direct epitaxial optical I/O integration in its infancy.
 - Extra epitaxial layers will decrease yield.
 - Thermal and voltage issues critical at 90nm.
 - Cannot run optical I/O off any less than 3.3V.
- Use flip-chip techniques instead until optical I/O epitaxy^{Stud} improves.

Flip-Chip VCSEL Using Compliant Polymer Bumps

Optoelectronic Packaging

- FC6 flip-chip bonder for
 - IR Thermocompression
 - UV Thermocompression
 - Reflow
- K&S 4124 ball bonder
- EDB80 wire bonder
 - Stud, die and wire bonding

 Access to facilities of specialist packaging companies for larger jobs

Solder Bumps

- Pb/Sn solder phased out. Au/Sn and In bumps.
- Creep rate can give micron level misalignment.
- Flux required. Can lead to impurities in the process.

Flip-Chip MQW Using Solder Bumps

Solder Bumps Ready to Bond

Gold Stud Bumps

- Good conductor, requires no flux, no creep.
- Only needs a modified wire bonder.
- Needs higher temperature and pressure than other attach methods.
- Final attach uses either conductive adhesive or reflow and pressure.

Flip-Chip VCSEL Using Gold Stud Bumps

Anisotropic Conductive Film

- Gold stud bumps formed and ACF used to create connection.
- Connection formed by compression of conductive particles.
- Resistivity varies from bond-site to bond-site.
- Can only be used at lower speeds: <1GHz.

Flip-Chip VCSEL Using Gold Stud Bumps and ACF Attach

Compliant Polymer Bumps

- Polymer bumps compressed to 80% original size to make connection.
- Bump elasticity gives tolerance to thermal mismatch.
- Flip-chipped substrate glued in place.
- Larger dimensions allow integrated waveguides.

Flip-Chip VCSEL Using Compliant Polymer Bumps

Conclusions and Final Thoughts

- Our experience of high connectivity free-space demonstrators
- Opto-mechanical design important for any optical system
 - Slotted base plate
 - Rapid prototyping
- Opto-electronic packaging
 - Our own small scale facilities and contacts with larger industrial partners
- Computer architecture as well as optical engineering expertise
- The Rest of Heriot-Watt University Physics
 - Diffractive Optics
 - Quantum Cryptography
 - Semiconductor Physics

•

