

Optics On Future Printed Circuit Board In High Speed Data Transmission Applications

Experiences in OHIDA project Antti Tanskanen

OHIDA

 Joint project of VTT, HUT, Aplac, Aspiration, Aspocomp, Elcoteq and Perlos, funded by TEKES

Objective
 Develop technologies to integrate
 high-speed (~10Gb/s/channel) optical
 interconnects into electrical wiring board

• Project results

- Design and analysis tools for micro-optics and high-bit-rate optoelectronics.
- Processing of optical waveguides, optical coupling structures and alignment structures.
- Assembly of micro-optics and optoelectronics.
- Technology demonstrator for 4x10 Gbps optical interconnects on a PWB

2

THE DEMONSTRATOR

The demonstrator: 4x10Gbps Receiver and transmitter modules (blue) are connected by 4 optical lines on top of a FR-4 circuit board. The demonstrator was assembled in a standard electronics production plant.

Optical coupling + integration on LTCC module

PCB cross-section, four 50/75 um optical channels visible

Tx/Rx MODULE OF OHIDA DEMO

7.2.2006

RESULTS

- For comparison, 25Gbps electrical transmission using equalization and duobinary encoding has been reported over 60cm of FR-4 (Adamiecki et al., Electron.Letters v.41, no.14, Jul. 2005)
- Total optical path loss of the demonstrator 19dB, measured propagation loss 0.15dB/cm for acrylate waveguides, 0.55dB/cm for SU8 guides, mirror losses <2.5dB
- Alignment tolerances:
 - +-40..60um for the LTCC module (-1dB optical loss)
 - +-5um for the microlenses, VCSEL's and detectors
 - Special alignment schemes were developed
- Bit rate density 42Gbps/mm²
- Power/Bit rate (transmitter and receiver combined) 30mW/Gbps

DISCUSSION

- Electric transmission on FR-4 has been going out of fashion for a long time...
- Optoelectronics is straightforward approximately up to 10..12GBps/channel, 20..45Gbps range demands special components (optical modulators, InP) etc.
- Alignment of the optics is still somewhat critical in standard electronics production environments.
- Power dissipation in optical data transmission is now comparable or lower to the electric transmission
- Virtually no cross-talk in optical transmission
- Propagation losses are the main constraint for transmission distances on PCB (the jitter is negligible)
- No "optical pins" yet, electronic and optics must be integrated on a module
- Few or none readily space qualified components available

