Integrated Communications and Thermal Management Microsystem for Advanced Spacecraft

J Köhler, H Kratz, M Karlsson, A Eriksson, G Thornell, and L Stenmark
The Ångström Space Technology Centre
Uppsala University
Preliminary Performance Spec.

- Microsystem size 68x68x6.6 mm
- Mass 54 grams (including casing)
- Uplink/downlink data speed of 100kbps/1Mbps
- Flat patch antenna with circular polarization and 6 dBi gain
- Latent heat paraffin heat sink 6.3 g x 260 J/g
- Thermal heat transfer modulation between switch on and off state is 10.
Outline

- System Overview
- Anatomical Description
- Multifunctionality
 - Paraffin as a multifunctional material
- Detailed Design
 - Communications
 - Thermal Management
- Conclusions
System Overview

- Communications and thermal management
- Essentially three functional layers
 - Electronics and heat switch at a floating thermal potential
 - Antenna spacer and thermal spacer
 - Patch antenna, thermal radiator surface with a well defined thermal interface to spacecraft chassis
Anatomical Description
Multifunctionality

- Communication function
- Thermal management
- Structure
- Concurrent triple usage of paraffin
 - Low loss antenna substrate
 - Thermal heat storage
 - Actuator for thermal conductance switch

Paraffin

The Ångström Space Technology Centre
Paraffin as a multifunctional material

- Paraffin as a low cost and low loss microwave substrate material
- Inherent heat storage using paraffin latent heat
- Large stroke and high force actuator in microsystems

The Ångström Space Technology Centre
Detailed Design – Communications

Uplink S-band

3 m Parabola
Stationary or Mobile Site

Target Area

Telemetry Downlink S-band

Store and Forward

Velocity Vector

Information Gathering

Camera
Detailed Design – Thermal Management

- Absorption of transient heat flows by latent heat
- During phase change, a 15% increase in paraffin volume
- Thermomechanical design of expansion chambers
- By design, switch is actuated when 75% of latent heat is consumed
Conclusions

- An Integrated Communications and Thermal Management Microsystem for Advanced Spacecraft has been presented
 - Paraffin as a multifunctional material
 - Communication performance 1Mbit/100kbit
 - Heat storage 6.3 g x 260 J/g
 - Floating thermal potential for electronics
 - Thermal modulation of 10 for the thermal switch layer