DESIGN AND DEVELOPMENT OF AN ULTRA LOW POWER COMMUNICATION PROTOCOL FOR WIRELESS AUTONOMOUS MICROSYSTEMS

Rob van Heijster

TNO | Knowledge for business

Outline

Introduction

- Applications
- Communication nodes
- Protocols
- Conclusions

The next generation

Bell's law: • every decade a new generation log (people per computer) (class of computers) October 5, 2005 0 1960 1970 1980 1990 2000 2010 [Culler:2004] year

Introduction

Ultra low power protocol

- To connect autonomous micro-sensor systems
- Limited energy available
- Sensor Nodes (SN's) autonomously ACT:
 - Analyse environment
 - Communicate
 - Take action

Wireless Sensor Networks

Integrated devices

- power supply
- sensors
- embedded processor
- wireless link

Many, cheap sensors

- wireless → easy to install & operate
- intelligent → collaboration
- low-power → long lifetime

Small size

- Increased applicability
- Low production cost
- MST
- MCM (ASIC expensive)

Autonomous sensor

Transceiver

Embedded

Processor

Battery

Memory

Sensors

TNOdes

The battery crisis (Moore's law evil twin brother) Limited capacity

~2 kcal (per battery) Slow increase of capacity

- ~8% yearly increase (Wh/cm³)
- doubles every 9 years

Decrease in energy consumption is decrease in size!

~280 kcal (without cheese !)

Outline

- Introduction
- Applications
- Communication nodes
- Protocols
- Conclusions

Sensor applications Medical

Process industry

and many more...

Urban warfare

Fire fighting

Photo: Space

Photo: RNLN

Harbor defense

(Sensor) Applications

Ad-hoc communication (no infrastructure)

- Between swarms of (micro)-robots
- Between (micro)-robots and spacecraft
- Intra-spacecraft (robust communication)

Photo: ESA

Photo: NASA

Applications @ TNO

Homecare

Munitions' health monitoring

Public safety

Agriculture

10

Outline

- Introduction
- Applications
- Communication nodes
- Protocols
- Conclusions

Autonomous sensor nodes

 Pressure sensor with 868 MHz tranceiver and 2,4 Ghz power

harvesting

• Wireless microbrick sensors

TNO node (TNOde)

- Universal node
- Universal sensor interface available
 - Analog
 - Digital
- T-MAC protocol

Research topics

Issues:

- node localization
- MAC protocols
- ad-hoc routing
- network intelligence
- energy harvesting

Objectives / constraints:

- unattended operation
 - self-configuration
 - robustness
- limited resources
 - energy
 - memory

Outline

- Introduction
- Applications
- Communication nodes
- Protocols
- Conclusions

Wireless MAC protocols

Control access to the shared medium (radio channel)

- avoid interference between transmissions
- mitigate effects of collisions (retransmit)

Approaches

- contention-based: no coordination → CSMA/CA
- schedule-based: central authority (access point) → TDMA

Traditional MAC protocols designed to:

- maximize packet throughput
- minimize latency
- provide fairness

Communication patterns

WSN applications:

- local collaboration when detecting a physical phenomenon
- periodic reporting to sink

Characteristics:

- low data rates < 1000 bps
- small messages ~ 25 bytes
- fluctuations (in time and space)

Requirements for the protocol

Handle scarce resources

- CPU: 1 10 MHz
- memory: 2 4 KB RAM
- radio: ~100 Kbps
- energy: small batteries

Unattended operation

- Plug & play
- Robustness
- Ad-hoc routing
- Long lifetime

Standards do not suffice!

- 802.11
 - ad-hoc / hopping ✓
 - power consumption (power save mode not for multi-hop networks)
 - memory footprint ^k
- Bluetooth
 - ad-hoc / hopping (limited network size)
 - power consumption [#]
 - memory footprint #
- Zigbee
 - ad-hoc / hopping (no communication between RFDs)
 - power consumption (continuous listening for peer-2-peer data transfers)

(i)

memory footprint

Design guidelines

- Switch radio off whenever possible (duty cycle) AND, minimize number of switches
- Low complexity (memory footprint)
- Minimize idle listening
- Trade off performance for energy
- Minimize overhead
- Optimize for traffic patterns

Goal:

Energy for communication
<
Energy for sensing

19

Sources of overhead

- idle listening (to handle potentially incoming messages)
- collisions (wasted resources at sender and receivers)
- overhearing (communication between neighbors)
- protocol overhead (headers and signaling)
- traffic fluctuations (overprovisioning and/or collapse)
- **scalability/mobility** (additional provisions)

Dynamic duty-cycling: T-MAC

active period ends when no activation event occurs in TA

MAC protocol designed to:

- minimize energy consumption
 - prevent collisions
 - minimize protocol overhead
 - avoid overhearing
- support self-configuration

Conclusions

- Standard wireless protocols do not suffice for WSN, because of:
 - complexity (memory footprint)
 - power consumption (lifetime)
- Zigbee comes closest to being useful
 - only for particular deployment scenarios it suffices
- Solutions already exist @ TNO
 - extend Zigbee with T-MAC to truly support ad-hoc networking!

Thank you for your attention!

Rob van Heijster rob.vanheijster@tno.nl +31 70 3740385

© 2005 TNO Defence, Security and Safety

23

END

Spare slides

Standard 1: 802.11

26

Standard 2: Bluetooth

 asynchronous / synchronous / isochronous data transports

Standard 3: *Zigbee* ≈ 802.15.4

Mesh

Cluster Tree

- coordinated / uncoordinated communication
- slotted / unslotted CSMA/CA

PAN coordinatorFull Function DeviceReduced Function Device

[Zigbee Alliance:2004]

Standards overview

	Zigbee/802.15.4	Bluetooth/802.15.1	WLAN/802.11b
Application area	Monitoring	Cable replacement	E-mail, video, web
System requirements	4 - 32 kbyte	> 250 kbyte	> 1 Mbyte
Battery life (days)	100 - 1000	1 - 7	0.1 - 5
Network nodes	255 - 65k	7	30
Bandwidth (kbit/s)	250	720	>11.000
Range (m)	1-75	1-10	1 – 100
Key attributs	Cost, Power consumption	Cost, ease of usage	Fast and flexible
Source	HELICOMM		

D3: Data-centric MAC & routing

- light-weight
- scalable
- energy-conserving
- robust

No central authority

The *data* is important, not the *node* it came from

Step 1: Interest propagation

• *Sink* sends *interests* to all nodes using *flooding*

Step 2: Data advertisement

- Sink sends interests to all nodes using flooding
- Node *advertises* it *will* send data using *broadcasting*

Step 3: Data transmission

- Sink sends interests to all nodes using flooding
- Node *advertises* it *will* send data using *broadcasting*
- Actual data is *broadcasted* to *interested* neighbors

Step 4: Data advertisement revisited

- Sink sends interests to all nodes using flooding
- Node advertises it will send data using broadcasting
- Actual data is *broadcasted* to *interested* neighbors
- Subsequent advertisements are used to acknowledge and delay transmissions

Step 5: Data transmission

- Sink sends interests to all nodes using flooding
- Node advertises it will send data using broadcasting
- Actual data is *broadcasted* to *interested* neighbors
- Subsequent advertisements are used to acknowledge and delay transmissions
- The data is *forwarded* to the sink

Step 6: Final data advertisement

- Sink sends interests to all nodes using flooding
- Node advertises it will send data using broadcasting
- Actual data is *broadcasted* to *interested* neighbors
- Subsequent advertisements are used to acknowledge and delay transmissions
- The data is *forwarded* to the sink
- The sink *acknowledges* the reception of the data

Assumptions

- Transmitting data advertisements is cheaper than transmitting actual data messages
- Duty-cycled CSMA/CA MAC scheme (e.g., S-MAC, T-MAC)
- The *data* is important, not the *node* it came from

