## Failure mechanisms and reliability issues of RF-MEMS switches

I. De Wolf, P. Czarnecki, A. Jourdain, S. Kalicinski, R. Modlinski, P. Muller, X. Rottenberg, P. Soussan, H. Tilmans

imec 2002

IMEC
Leuven, Belgium
SEEDS FOR
TOMORROW'S WORLD

## Outline

■ Introduction

■ FMEA of RF-MEMS switches

- Charging induced stiction
- Packaging effect on switch lifetime
- Conclusions

Radio Frequency MEMS switches offer:

- Low weight
- Low volume
- Lower insertion loss
- High isolation
- Large frequency range
- Extremely high linearity
- Low power consumption
- Integration possibilities

Uses in space:



Wireless personal communication, satellite communication, phased array for beam steering, smart antennas ...

BUT: reliability is a problem

## RF-MEMS capacitive switch



## ESA - ENDORFINS: synopsis

Title
Enabling deployment of RF MEMS technology in space telecommunication.

Objective
Perform an in-depth assessment of the reliability and related failure modes of RF-MEMS, in view of their deployment in space and improve this reliability (for switches) through processing optimization.

Starting date
Aug 15, 2005
Duration
24 months

## FMEA: Failure Mode Effect Analysis



## FMEA: Failure Mode Effect Analysis



## FMEA: Failure Mode Effect Analysis




## Charging induced stiction

Lifetime test @ 100 Hz
$\mathrm{V}_{\mathrm{act}}=25 \mathrm{~V}$, unipolar actuation $\mathrm{N}_{2}$ environment


Fast C-V

© imec 2005
van Spenqen et al, IRPS 2005, P. Czarnecki et al., MEMSWAVE 2005

## C/V characteristic shift without surface charge


X. Rottenberg et al, $34^{\text {th }}$ EuMW conf., 2004

## C/V characteristic shift due to a positive surface charge <br> ```*```



## C/V characteristic shift due to a positive surface charge


X. Rottenberg et al, 34 ${ }^{\text {th }}$ EuMW conf., 2004, vardc Spengen et al., J. of Micromech. Microeng. 14, 2004

## Solution: Alternative actuation



## Unipolar vs bipolar

Bipolar actuation
$35 \mathrm{~V}, 100 \mathrm{~Hz}$




Unipolar actuation $35 \mathrm{~V}, 100 \mathrm{~Hz} \xrightarrow[\text { U }]{\xrightarrow{4} \text {, }}$


## 3D problem description

The total charge $(Q)$ can be zero, but there might be a charge distribution in the dielectric.



## 2D+ problem description

$$
F_{e l}(d)=\frac{C_{1}(d) C_{2}^{2}}{2 d\left(C_{1}(d)+C_{2}\right)^{2}}\left\{\left(V-Q_{e q} / C_{2}\right)^{2}+\frac{\text { Area }^{2}}{C_{2}^{2}} \sigma^{2}\left(\psi_{e q}\right)\right\}
$$

$$
\begin{array}{cl}
Q_{e q} & =\text { total equivalent charge }=\text { Area } x \text { mean of } \quad \psi_{e q}(x, y) \\
\sigma^{2}\left(\psi_{e q}\right) & =\text { variance of the equivalent charge distribution } \quad \psi_{e q}(x, y)
\end{array}
$$

$Q_{e q}$ realizes a voltage offset (x-shift in the $F_{e l}$ vs. $V$ curve) $\sigma^{2}\left(\psi_{e q}\right)$ realizes a force offset ( $y$-shift in the $F_{e l}$ vs. $V$ curve)

## Evolution of Pull-in and Pull-out



## Charging induced stiction

Theory - Experiment
Unipolar actuation: $\mathrm{Q} \neq 0$-> shift of the $\mathrm{C}-\mathrm{V}$ curves Bipolar actuation: $\mathbf{Q}=0$ but $\sigma^{2}\left(\Psi_{\text {eq }}\right) \neq 0$-> narrowing of Vpo and Vpi



X. Rottenberg et al, 34 ${ }^{\text {th }}$ EuMW conf., 2004, P. Czarnecki et al., submitted for MEMSWAVE 2005 © imec 2005

## MEMS package

Pressure, humidity, optical, chemicals, particles, ...


Function: "Gate keeper"

- keep bad things out (particles, humidity, gasses, ...)

-keep good things in (pressure, getters, ...)
-throw excess things out (heath, ...)
- allow easy in-out to VIPS (electrical, to-sense stuff, ...)
- give mechanical support
- be reliable


## Deformation: T-effects

Some metals (ex. Al-alloys) change 'stress' when heated above $T=T_{c}$ :


Temperature:

- during functioning
- during packaging



## Deformation: T-effects

$T_{c}$ is alloy dependent: $T_{c}$ AICuMgMn $>T_{c} A I$
Stress (MPa)


- Use metal with high Tc
- Or do a pre-anneal (but different stress)
- Optimize design to minimize the impact of stress changes on the shape of the bridge.


## Pressure in cavity




The 'floppy' switch shows overshoot already at 0.125 bar.

## Pressure in cavity

## $\Delta C$ (a.u.)




Stiff

The 'STIFF' switch shows overshoot at $\sim 0.075$ bar: clear dependence of the 'overshoot point' on the design

## Pressure in cavity

Lower lifetime at lower pressure (larger $\mathrm{C}_{\text {down }}$, better charging).


Details and more results will be presented at MEMS2006 by P. Czarnecki et al., IMEC

## Gasses in cavity: $\mathbf{N}_{\mathbf{2}}$ vs air

## Different technologies, different designs, different dielectrics,

 different electrical test conditions ( $\mathrm{V}_{\mathrm{act}}$, freq.)



Nitrogen vs air:
longer lifetime + larger $\mathbf{C}_{\text {down }}$
-> packaging in $\mathrm{N}_{2}$ gives a better reliability (different damping, dielectric constant, gap breakdown V, humidity,...)

## Conclusions

- FMEA: main failure mechanism in capacitive RF-MEMS = charging of the dielectric leading to stiction of the bridge
- Possible solutions:

Design for low Vpi, but high Vpo
Design for flat bridge (uniform charging + low charge distribution)
Make the insulator area as small as possible (lower sensitivity of Vpo)
Use bipolar actuation waveform
Package the switch in a nitrogen environment
Be careful with vacuum (bouncing + lower lifetime possible)

- FMEA: main packaging induced failure is deformation of the bridge
- Possible solutions:

Use metal with high Tc
Try to reduce the packaging T
What else can be done?

- alternative ways of bipolar actuation
- better dielectric (less charging sensitive)
- worse dielectric (such that the charges disappear faster)


## Acknowledgments

IMEC: MEMS, packaging, reliability and RF team

## IWT MISTRA

\author{

- cesa
}

Endorfins


IST 28276

MEMS 2 TUNE
IST 28231

