Failure mechanisms and reliability issues of RF-MEMS switches

IMEC
Leuven, Belgium
Outline

- Introduction
- FMEA of RF-MEMS switches
- Charging induced stiction
- Packaging effect on switch lifetime
- Conclusions
Radio Frequency MEMS switches offer:
- Low weight
- Low volume
- Lower insertion loss
- High isolation
- Large frequency range
- Extremely high linearity
- Low power consumption
- Integration possibilities

Uses in space:
Wireless personal communication, satellite communication, phased array for beam steering, smart antennas ...

BUT: reliability is a problem
RF-MEMS capacitive switch

Flexible metal bridge

dielectric

RF+DC in

GND

“large” C

OFF

RF in

RF out

Radio frequency MEMS
Title

Enabling deployment of RF MEMS technology in space telecommunication.

Objective

Perform an in-depth assessment of the reliability and related failure modes of RF-MEMS, in view of their deployment in space and improve this reliability (for switches) through processing optimization.

Starting date

Aug 15, 2005

Duration

24 months
FMEA: Failure Mode Effect Analysis

<table>
<thead>
<tr>
<th>Potential Failure Mechanism</th>
<th>Sev</th>
<th>Failure Defect</th>
<th>Failure Mode</th>
<th>Occ</th>
<th>P</th>
<th>N</th>
<th>Possible Failure Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dielectric charging of the insulator of capacitive switches</td>
<td>5</td>
<td>Dielectric charging of the insulator of capacitive switches</td>
<td>Front to bottom electrode, Not a normal gas flow away from dielectric surface</td>
<td>7</td>
<td>49</td>
<td>1. Electric Field Charge Injection 2. ArSiN Breakdown</td>
<td></td>
</tr>
<tr>
<td>2 Plastic deformation of the bridge (ohmic and capacitive switches)</td>
<td>7</td>
<td>Permanent deformation of the bridge, possibly broken if large deformation to bottom electrode or top of dielectric if packaged</td>
<td>Shift of electrical parameters (pull-in/pull-out, capacitance, conduct R)</td>
<td>5</td>
<td>49</td>
<td>1. Creep 2. Thermal induced changes in material properties (for T< To)</td>
<td></td>
</tr>
<tr>
<td>4 Capillary Force (ohmic and capacitive switches)</td>
<td>10</td>
<td>Stiction</td>
<td>Dead device</td>
<td>4</td>
<td>49</td>
<td>1. Presence of humidity (Package lead, incorrect release step)</td>
<td></td>
</tr>
<tr>
<td>5 Firing (ohmic and capacitive switches)</td>
<td>10</td>
<td>Open, roughness increase</td>
<td>Dead Device</td>
<td>4</td>
<td>49</td>
<td>1. High RF power pulses, ESD</td>
<td></td>
</tr>
</tbody>
</table>
FMEA: Failure Mode Effect Analysis

<table>
<thead>
<tr>
<th>Potential Failure Mechanism</th>
<th>Prev</th>
<th>Failure Defect</th>
<th>Failure Mode</th>
<th>Occ</th>
<th>P.N.</th>
<th>Role in Failure Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric charging of the insulation of capacitive switches</td>
<td>8</td>
<td>Station to bottom electrode. Not permanent (charges flow away when charging cause is taken away).</td>
<td>Drift in CV curves, drift in Pull-in and Pull-out voltages, Dead device</td>
<td>10</td>
<td>49</td>
<td>1. Electron Emission</td>
</tr>
<tr>
<td>Mis-welding (ohmic switches and capacitive switches with contact metal on dielectric)</td>
<td>9</td>
<td>Station</td>
<td></td>
<td></td>
<td></td>
<td>2. Cold welding</td>
</tr>
<tr>
<td>T-Induced elastic deformation of the bridge (ohmic and capacitive switches)</td>
<td>7</td>
<td>Non-permanent bridge (i.e. non-tarnish deformation of cavity)</td>
<td></td>
<td></td>
<td></td>
<td>3. ESD</td>
</tr>
<tr>
<td>Elastic deformation of the bridge (ohmic and capacitive switches)</td>
<td>4</td>
<td>Station</td>
<td></td>
<td></td>
<td></td>
<td>4. High current through metal-metal contacts (resistive at room temp, hot welding)</td>
</tr>
<tr>
<td>Structural Short electrical and non-electrical connection (ohmic and capacitive switches)</td>
<td>10</td>
<td>Station</td>
<td></td>
<td></td>
<td></td>
<td>5. Power RF Signal induced Temperature</td>
</tr>
<tr>
<td>Peeling</td>
<td>10</td>
<td>Open, no</td>
<td></td>
<td></td>
<td></td>
<td>6. Non-uniform temperature degradation</td>
</tr>
</tbody>
</table>

18 different failure mechanisms were identified.
FMEA: Failure Mode Effect Analysis

<table>
<thead>
<tr>
<th>Potential Failure Mechanism</th>
<th>Say</th>
<th>Bev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric breakdown of the insulator, capacitive switches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent DC Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorenz Forces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whisker formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromigration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van der Waals Forces</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fracture
(ohmic and capacitive switches)

<table>
<thead>
<tr>
<th>Possible Failure Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fatigue</td>
</tr>
<tr>
<td>2. Brittle materials + shock</td>
</tr>
<tr>
<td>3. High local stresses + shock</td>
</tr>
</tbody>
</table>

Creep
(ohmic and capacitive switches)

<table>
<thead>
<tr>
<th>Possible Failure Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sliding Rough Surfaces in contact</td>
</tr>
</tbody>
</table>

Equivalent DC Voltage
(ohmic and capacitive switches)

Lorenz Forces
(ohmic and capacitive switches)

Whisker formation
(ohmic and capacitive switches)

Fatigue
(ohmic and capacitive switches)

Electromigration
(ohmic and capacitive switches)

Van der Waals Forces
(ohmic and capacitive switches)
Lifetime tests in dedicated chamber

- Thermo-chuck: -10 to +150 °C
- Wafer load slot: Up to 200 mm wafers
- Pressure control: (down to 10^{-6} mbar)
- XYZ-microscope stage: 12x zoom
- Vacuum resistant RF and DC probes
- Gases inlet
- X-Y-Z- Chuck stage: (150, 150, 15 mm, ± 7° travel range)
Charging induced stiction

Lifetime test @ 100 Hz
\(V_{\text{act}} = 25 \, \text{V}, \) unipolar actuation
\(N_2 \) environment

\[\Delta C = C_{\text{down}} - C_{\text{up}} \]

end of life (EOL)

Failure due to charging induced stiction
Fast C-V

Failed: curve shifts to right.

19 hours later: curve shifted partly back

Control: symmetric curve

van Spengen et al, IRPS 2005, P. Czarnecki et al., MEMSWAVE 2005
C/V characteristic shift without surface charge

X. Rottenberg et al, 34th EuMW conf., 2004
C/V characteristic shift due to a positive surface charge

\[V_{\text{shift}} = \frac{Q}{C_{\text{down}}} \]

X. Rottenberg et al, 34th EuMW conf., 2004
C/V characteristic shift due to a positive surface charge

\[V_{\text{shift}} = \frac{Q}{C_{\text{down}}} \rightarrow \text{stiction} \]

C-V with charging

C-V without charging

Pull-out window

Solution: Alternative actuation

Reduced V across dielectric

Bipolar
Unipolar vs bipolar

Unipolar actuation
35V, 100Hz

35V, 100Hz

Bipolar actuation

>2x10^7

5x10^6
The total charge \(Q \) can be zero, but there might be a charge distribution in the dielectric. Assume a volume charge density \(\Psi(x,y,z) \) in the dielectric.

\[-\rightarrow \text{Equivalent charge distribution } \Psi_{eq}(x,y) \text{ (2D+ problem)}\]
2D+ problem description

\[F_{el}(d) = \frac{C_1(d) C_2^2}{2d(C_1(d) + C_2)^2} \left\{ \left(V - \frac{Q_{eq}}{C_2} \right)^2 + \frac{\text{Area}^2}{C_2^2} \sigma^2(\psi_{eq}) \right\} \]

- \(Q_{eq} \) = total equivalent charge = Area x mean of \(\psi_{eq}(x,y) \)
- \(\sigma^2(\psi_{eq}) \) = variance of the equivalent charge distribution \(\psi_{eq}(x,y) \)

\(Q_{eq} \) realizes a voltage offset (x-shift in the \(F_{el} \) vs. \(V \) curve)

\(\sigma^2(\psi_{eq}) \) realizes a force offset (y-shift in the \(F_{el} \) vs. \(V \) curve)
Evolution of Pull-in and Pull-out

\[\sigma^2(\psi_{eq}) = \sigma^2_{no_PI} \]
\[\sigma^2(\psi_{eq}) = \sigma^2_{no_PO} \]

Increasing \(k \), \(d_0 \) and decreasing the Area decrease the sensitivity to the equivalent charge distribution
Charging induced stiction

Theory - Experiment

Unipolar actuation: \(Q \neq 0 \) -> shift of the C-V curves
Bipolar actuation: \(Q = 0 \) but \(\sigma^2(\Psi_{eq}) \neq 0 \) -> narrowing of Vpo and Vpi

X. Rottenberg et al, 34th EuMW conf., 2004, P. Czarnecki et al., submitted for MEMSWAVE 2005
MEMS package

Pressure, humidity, optical, chemicals, particles, ...

Function: “Gate keeper”
- keep bad things out (particles, humidity, gasses, …)
- keep good things in (pressure, getters, …)
- throw excess things out (heath, …)
- allow easy in-out to VIPS (electrical, to-sense stuff, …)
- give mechanical support
- be reliable
Some metals (ex. Al-alloys) change ‘stress’ when heated above $T = T_c$:

Deformation: T-effects

Temperature:
- during functioning
- during packaging
Deformation: T-effects

T_c is alloy dependent: $T_c_{AlCuMgMn} > T_c_{Al}$

- Use metal with high Tc
- Or do a pre-anneal (but different stress)
- Optimize design to minimize the impact of stress changes on the shape of the bridge.
Pressure in cavity

1 bar

2x10^-4 mbar

- faster switching in vacuum
- vibrations
Pressure in cavity

The ‘floppy’ switch shows overshoot already at 0.125 bar.
The ‘STIFF’ switch shows overshoot at ~ 0.075 bar: clear dependence of the ‘overshoot point’ on the design.
Pressure in cavity

Lower lifetime at lower pressure (larger C_{down}, better charging).

Details and more results will be presented at MEMS2006 by P. Czarnecki et al., IMEC
Gasses in cavity: N_2 vs air

Different technologies, different designs, different dielectrics, different electrical test conditions (V_{act}, freq.)

Nitrogen vs air:
- longer lifetime + larger C_{down}
- ΔC (a.u.)
- $\#$ of cycles

Ta_2O_5

SiO_2

SiN_x

Nitrogen vs air:
- better reliability
- different damping, dielectric constant, gap breakdown V, humidity,…

imbus 2005
Conclusions

- **FMEA**: main failure mechanism in capacitive RF-MEMS = charging of the dielectric leading to stiction of the bridge

 - Possible solutions:
 - Design for low V_{pi}, but high V_{po}
 - Design for flat bridge (uniform charging + low charge distribution)
 - Make the insulator area as small as possible (lower sensitivity of V_{po})
 - Use bipolar actuation waveform
 - Package the switch in a nitrogen environment
 - Be careful with vacuum (bouncing + lower lifetime possible)

- **FMEA**: main packaging induced failure is deformation of the bridge

 - Possible solutions:
 - Use metal with high T_c
 - Try to reduce the packaging T

What else can be done?

- alternative ways of bipolar actuation
- better dielectric (less charging sensitive)
- worse dielectric (such that the charges disappear faster)
Acknowledgments

IMEC: MEMS, packaging, reliability and RF team

Medina
14627/00/NL/KW

IWT MISTRA

Endorfins

ESA

MPA

IST 28276

MEMS 2 TUNE

IST 28231