

Failure mechanisms and reliability issues of RF-MEMS switches

<u>I. De Wolf</u>, P. Czarnecki, A. Jourdain, S. Kalicinski, R. Modlinski, P. Muller, X. Rottenberg, P. Soussan, H. Tilmans

IMEC Leuven, Belgium

> SEEDS FOR TOMORROW'S WORLD

Introduction

- FMEA of RF-MEMS switches
- Charging induced stiction
- Packaging effect on switch lifetime
- Conclusions

Radio Frequency MEMS switches offer:

- Low weight
- Low volume
- Lower insertion loss
- High isolation
- Large frequency range
- Extremely high linearity
- Low power consumption
- Integration possibilities

Uses in space:

Wireless personal communication, satellite communication, phased array for beam steering, smart antennas ...

BUT: reliability is a problem

RF-MEMS capacitive switch

imec

ESA - ENDORFINS: synopsis

Title

Enabling deployment of RF MEMS technology in space telecommunication.

Objective

Perform an in-depth assessment of the reliability and related failure modes of RF-MEMS, in view of their deployment in space and improve this reliability (for switches) through processing optimization.

Starting date Aug 15, 2005

Duration 24 months

FMEA: Failure Mode Effect Analysis

FMEA: Failure Mode Effect Analysis

FMEA: Failure Mode Effect Analysis

			Eracture						
		Potential Failure Mechanism	Sev		(obmic and canacitive switches)			Possible Failure Cause	
	8	Fracture		Brol				1. Fatigue	
		(ohmic and capacitive switches)			11		1 I		2. Brittle materials + shock
			Cr:	eep					3. High local stresses + shock
	9	Dielectric breakdown of the insulator.				ulat	tor.		1. ESD
1		capacitive switches)	(ol	(ohmic and capacitive switches)					2. Excessive charging of Insulator
	10	Corrosion (ohmic and capacitive switches)	Equivalent DC Voltage						1. Presence of water or other fluid (chemical reaction), enhanced by bias
				(ohmic and capacitive switches)				2. Corrosive gases induced chemical reaction (ex. Oxidation)	
	11	Wear Friction	Lo	Lorenz Forces					1. Sliding Rough Surfaces in contact
		Netting corrosion (climite and capacities solitones)	(01	(ohmic and capacitive switches)					
	17	Creep (obmic and canacitive soutched)	Whisker form ation						High metal stress and high temperatures, creep sensitive metal.
/	13	Equivalent DC Voltage	(ol	(ohmic and capacitive switches)					High RF power inducing spontaneous collapsing or stiction of mobile part
	14	Lorenz Forces	F a	Fatigue					1. High RF power in two adjacent lines
		(ohmic and capacitive switches)		-					2. External Magnetic Field
	15	Whisker formation (ohmic and capacitive switches)	(ohmic		c and capacitive switches)				High compressive stress in metal resulting in grains extrusions; might be enhanced by T-steps
	16	Fatigue (ohmic and capacitive switches)				9			Large local stress variations due to
			EI	ectro	omigration	nces	10es 3 2	24	motion of parts (intended or due to vibrations or thermal cycles). Enhanced probability if cracks are present or surfaces are rough
	17	Electromigration (ohmic and capacitive switches)	(oł	hmio	c and capacitive switches)	ens,	2	16	1. High current density in metal lines enhanced by too thin and/or narrow, and steps.
	18	Van der Waals Forces (ohmic and capacitive surtches)	Va	in de	er Waals Forces		1	10	Large very smooth and flat surfaces in close contact
			l (ot	nmic	and capacitive switches)				

C/V characteristic shift without surface charge

X. Rottenberg et al, 34th EuMW conf., 2004

C/V characteristic shift due to a positive surface charge

X. Rottenberg et al, 34th EuMW conf., 2004

Stiction

mec

Unipolar vs bipolar

Stiction

3D problem description

2D+ problem description

$$F_{el}(d) = \frac{C_1(d) C_2^2}{2d(C_1(d) + C_2)^2} \left\{ \frac{\left(V - Q_{eq}/C_2\right)^2 + \frac{Area^2}{C_2^2}\sigma^2(\psi_{eq})}{C_2^2} \right\}$$

 Q_{eq} = total equivalent charge = *Area* x mean of $\psi_{eq}(x, y)$ $\sigma^2(\psi_{eq})$ = variance of the equivalent charge distribution $\psi_{eq}(x, y)$

 Q_{eq} realizes a voltage offset (x-shift in the F_{el} vs. V curve) $\sigma^2(\psi_{eq})$ realizes a force offset (y-shift in the F_{el} vs. V curve)

Stiction

Evolution of Pull-in and Pull-out

X. Rotten berg et al, 34th EuMW conf., 2004, P. Czarnecki et al., submitted for MEMSWAVE 2005

MEMS package

Function: "Gate keeper"

keep bad things out (particles, humidity, gasses,...)

-keep good things in
(pressure, getters, ...)

-throw excess things out (heath,...)

- allow easy in-out to VIPS (electrical, to-sense stuff,...)
- give mechanical support
- be reliable

Deformation: T-effects

Some metals (ex. Al-alloys) change 'stress' when heated above $T = T_c$:

Temperature:

- during functioning
- during packaging

mec

Deformation

Deformation: T-effects

 T_c is alloy dependent: T_c AlCuMgMn > T_c Al

• Use metal with high Tc

• Or do a pre-anneal (but different stress)

• Optimize design to minimize the impact of stress changes on the shape of the bridge.

The 'floppy' switch shows overshoot already at 0.125 bar.

Pressure in cavity

Lower lifetime at lower pressure (larger C_{down}, better charging).

Details and more results will be presented at MEMS2006 by P. Czarnecki et al., IMEC

Gasses in cavity: N₂ vs air

Different technologies, different designs, different dielectrics, different electrical test conditions (V_{act}, freq.)

SiN_x

10²

 10^{3}

 10^{4}

 10^{5}

 10^{6}

cycles

Nitrogen vs air: Ionger lifetime + larger C_{down}

-> packaging in N₂ gives a better reliability (different damping, dielectric constant, gap breakdown V, humidity,...)

0.20 -

0.15 -

 10^{0}

 10^{1}

Conclusions

- Possible solutions:
 - Design for low Vpi, but high Vpo
 - Design for flat bridge (uniform charging + low charge distribution)
 - Make the insulator area as small as possible (lower sensitivity of Vpo)
 - Use bipolar actuation waveform
 - Package the switch in a nitrogen environment
 - Be careful with vacuum (bouncing + lower lifetime possible)
- FMEA: main packaging induced failure is deformation of the bridge
- Possible solutions:
 - Use metal with high Tc
 - Try to reduce the packaging T

What else can be done?

- alternative ways of bipolar actuation
- better dielectric (less charging sensitive)
- worse dielectric (such that the charges disappear faster)

IMEC: MEMS, packaging, reliability and RF team

IWT MISTRA

