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RF MEMS
Radio Frequency MEMS switches offer:
– Low weight
– Low volume
– Lower insertion loss
– High isolation
– Large frequency range
– Extremely high linearity
– Low power consumption
– Integration possibilities

Uses in space:
Wireless personal communication, satellite communication, phased
array for beam steering, smart antennas ...

BUT: reliability is a problem
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RF-MEMS capacitive switch
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ESA - ENDORFINS: synopsis

Title
Enabling deployment of RF MEMS technology in space 

telecommunication.

Objective
Perform an in-depth assessment of the reliability and related 

failure modes of RF-MEMS, in view of their deployment in 
space and improve this reliability (for switches) through 
processing optimization. 

Starting date
Aug 15, 2005 

Duration
24 months



© imec 2005

FMEA: Failure Mode Effect Analysis 

The physics, chemistry causing the failure.
What is observed, the signature of the failure modeWhat is first measured indicating a failure

What is causing the failure mechanism
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FMEA: Failure Mode Effect Analysis 



© imec 2005

FMEA: Failure Mode Effect Analysis
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Lifetime tests in dedicated chamber

Vacuum resistant
RF and DC probes

Thermo-chuck
-10 to +150 oC

Pressure control 
(down to 10-6 mbar)

X-Y-Z- Θ Chuck stage 
(150, 150,15 mm, + 7o

travel range)

Wafer load slot
Up to 200 mm 
wafers

XYZ-microscope stage 
12x zoom

Gases inlet
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Charging induced stiction
Lifetime test @ 100 Hz
Vact = 25 V, unipolar actuation
N2 environment

Cdown

Cup

0V

∆C=Cdown- Cup end of life (EOL)
Failure due to 
charging induced stiction

ctr

failed

Stiction
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Fast C-V

200-20

200-20

200-20

Control:
symmetric curve

Failed: curve shifts to right. 

19 hours later: 
curve shifted partly 
back

van Spengen et al, IRPS 2005, P. Czarnecki et al., MEMSWAVE 2005

Stiction
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C/V characteristic shift without surface 
charge
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C/V characteristic shift due to a 
positive surface charge
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C/V characteristic shift due to a 
positive surface charge
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Solution: Alternative actuation
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Unipolar vs bipolar

U
t

U
t

Unipolar actuation
35V, 100Hz

Bipolar actuation
35V, 100Hz

>2x107
5x106
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3D problem description

The total charge (Q) can be zero, 
but there might be a charge 
distribution in the dielectric.

Assume a volume charge density Ψ(x,y,z) in the dielectric.
-> Equivalent charge distribution Ψeq(x,y) (2D+ problem)

X. Rottenberg et al, 34th EuMW conf., 2004

Stiction
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2D+ problem description
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Evolution of Pull-in and Pull-outStiction
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Charging induced stiction
Theory  - Experiment

X. Rottenberg et al, 34th EuMW conf., 2004, P. Czarnecki et al., submitted for MEMSWAVE 2005

ctr

failed

Stiction

Unipolar actuation: Q = 0 -> shift of the C-V curves
Bipolar actuation:   Q = 0 but σ2(Ψeq)  = 0 -> narrowing of Vpo and Vpi
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Package

Pressure, humidity, optical, 
chemicals, particles, …

MEMS package

Electrical Thermal 
Power

MEMS

-keep good things in
(pressure, getters, …)

-throw excess things out
(heath,…)

- allow easy in-out to VIPS
(electrical, to-sense stuff,…)

- give mechanical support 

- be reliable

- keep bad things 
out (particles, 
humidity, 
gasses,…)

Function:  “Gate keeper”
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Some metals (ex. Al-alloys) change ‘stress’ when 
heated above T = Tc:

Deformation: T-effects

250 °C during 
10 minutes

Before

After

Temperature:
- during functioning 
- during packaging

Deformation

Al 600nm  
4 inch Si wafer
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Tc is alloy dependent: Tc AlCuMgMn > Tc Al

Deformation: T-effectsDeformation
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• Use metal with high Tc

• Or do a pre-anneal 
(but different stress)

• Optimize design to 
minimize the impact of 
stress changes on the 
shape of the bridge.
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Pressure in cavity

2x10-4 mbar1 bar 
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1000600200
Time (µs) 10006002000

- faster switching in vacuum
- vibrations
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Pressure in cavity
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Time (µs)
10080604020

1 bar
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Stiff Floppy

The ‘floppy’ switch shows overshoot already at 0.125 bar.
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Pressure in cavity

bar
0.09
0.075
0.056
0.052
0.045
0.03
0.02
0.01
vac

∆C (a.u.)

Time (µs)
80604020

The ‘STIFF’ switch shows overshoot at ~ 0.075 bar: 
clear dependence of the ‘overshoot point’ on the design

Stiff
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Pressure in cavity
Lower lifetime at lower pressure (larger Cdown, better charging).

Details and more results will be presented at 
MEMS2006 by P. Czarnecki et al., IMEC
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Gasses in cavity: N2 vs air

Nitrogen vs air: 
longer lifetime + larger Cdown
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Different technologies, different designs, different dielectrics, 
different electrical test conditions (Vact, freq.)

-> packaging in N2 gives a 
better reliability
(different damping, dielectric 
constant, gap breakdown V, 
humidity,…)
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Conclusions
- FMEA: main failure mechanism in capacitive RF-MEMS = charging of 
the dielectric leading to stiction of the bridge
- Possible solutions:

- Design for low Vpi, but high Vpo
- Design for flat bridge (uniform charging + low charge distribution)
- Make the insulator area as small as possible (lower sensitivity of Vpo)
- Use bipolar actuation waveform
- Package the switch in a nitrogen environment
- Be careful with vacuum (bouncing + lower lifetime possible)

- FMEA: main packaging induced failure is deformation of the bridge 
- Possible solutions:

- Use metal with high Tc
- Try to reduce the packaging T

What else can be done?
- alternative ways of bipolar actuation
- better dielectric (less charging sensitive)
- worse dielectric (such that the charges disappear faster)
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