

Dielectric charging effects in RF MEMS capacitive switches

<u>Aurelian Crunteanu</u>¹, P. Blondy¹, A. Pothier¹, C. Champeaux², A. Catherinot², P. Tristant², O. Vendier³, J. L. Cazaux³, L. Marchand⁴

¹IRCOM- and ²SPCTS- UMR CNRS 6615 and 6638, Limoges, France

³Alcatel Alenia Space, Toulouse, France

⁴ESA-ESTEC, Nordwijk, The Netherlands

aurelian.crunteanu@ircom.unilim.fr

- Many types of devices and wide application areas
 - environment (sensors...)
 - biomedical devices (microfluidics, μ-TAS...)
 - imaging (displays...)
 - telecoms (high-frequencies components RF-MEMS...)
 - astronomy and space (adaptive optics, communications...)

▶ Key role in the ongoing miniaturization of future electronic modules

- integration, scale reduction, low-cost fabrication
- Iow insertion loss, low power consumption, high isolation
- actuation: electrostatic, magnetic, thermal...

RF MEMS - still in a state of research and early development

- Packaging
- Compliance with environmental stress factors (temp, humidity, shocks/ vibrations...)
- Reliability

Contact- and dielectric-based RF-MEMS switches

- Basic blocs components
 - •New materials investigation
 - •Reliability and increasing performance
- Complex tunable functions for RF applications using basic MEMS components: filters and meta-materials, phase shifters, MEMS-based reflect-array antennas....

Series configuration

Shunt configuration

Contact- and dielectric-based RF-MEMS switches

- Basic blocs components
 - •New materials investigation
 - •Reliability and increasing performance
- Complex tunable functions for RF applications using basic MEMS components: filters and meta-materials, phase shifters, MEMS-based reflect-array antennas....

- **Device related** (intrinsic- due to the mechanical nature, design...)
- Process related (materials, fabrication...)

Stiction

•Metal-to-metal contact: degradation through electro-migration, contamination

- humidity
- dielectric charging
- Buckling of the beam
 - mechanical stress, temperature
- Creep

High power handlingcontact/ ohmic switches

Melt contact finger

Current balance on each switch

Typical applied voltage >20 Volts over 0.2 µm (~1 MV/cm)

Dielectric charging is the main failure mode of capacitive MEMS switches

- electrical trap generation
- changing the values of Vpull-in and Vpull-out

Test structure - fabrication

- BST $Ba_xSr_{1-x}TiO_3$, x = 2/3, amorphous, ε_r = 18 20
 - low breakdown voltage \Rightarrow high thickness needed
- Al_2O_3 alumina, amorphous, $\varepsilon_r = 9-10$
 - high breakdown voltage for thinner layers thickness ~ 200 nm
 - low temperature deposition
 - good surface roughness
 - limitation of OH chemical bonds (avoid charge accumulation)
- Deposition methods: PLD or PECVD

Key parameters: dielectric constant, voltage break-down for a given thickness, roughness...

RF performances

Charging mechanisms:

- transfer and trapping of charges
- screening of the applied electric field
- actuation electrical force modification
- capacitance modification in time

- different polarization waveforms (sin, sq, triangular, user-defined ...)
- transmitted power recordings \approx capacitance variation during actuation

- 200 nm-thick Al2O3 (PLD)
- triangle waveform (35 V amplitude, 270 Hz)

•cycling by measuring the evolution of V_{pull-in}, V_{pull-out}, dV= V_{pull-in}- V_{pull-out} when applying polarization waveforms of different types, amplitudes or frequencies (= contact times)

400 nm-thick Al2O3 (PECVD), 300 Hz, 39 V amplitude, ambient atmosphere

- switch lifetime depends on:
- type of dielectric (charging/ discharging)
- breakdown voltage, thickness
- actuation voltage, frequency, waveform type, (contact time/ actuation period, total contact time)
- identification of charging mechanisms charging model?
- cycling: controlled atmosphere, stress factors (temp, humidity...)
- standard tests development for space qualification

Aim: create conductive paths in the dielectric for faster discharging How: doping with metals – metallic nano-clusters – LECBD technique Materials: nc Co: Al_2O_3 - 5%, 9%, 17% vol.

•MIM capacitances: I(V) curves for 200 nm-thick nc Co: Al₂O₃- 17% and 5% vol. •SCLC- type conduction

- •No trapping, no complicated actuation waveform
- •No drift in C(V)
- •No failure using unipolar bias
- •Large structure
- •Low on to off ratio

- Very good RF characteristics
- Proximity- contact MEMS switches can be a viable solution to the charging problems
- Still a lot of work to do:
 - •Reliability
 - fabrication (design, materials, stress...)
 - characterization/ testing
 - Packaging
 - Space qualification

• IRCOM- & SPCTS- UMR CNRS – University of Limoges

UNIVERSITE

- Alcatel Alenia Space
- ESA/ ESTEC
- <u>DGA</u>

