

R&D of Powder Blasting Micro-manufacturing of Space components

Geoff McBride Central Microstructure Facility, The Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK E-mail: g.mcbride@rl.ac.uk

Introduction

- Powder Blasting @ CMF
- What is Powder Blasting?
- Powder Blasting Processing
- Line features
- Hole Profiles
- Bio-structures
- Gyroscope Lids
- Graphite
- Nanothruster
- Cooler
- StarTiger

Powder Blasting @ CMF

CMF Powder Blasting Facilities

- Powder blasting chamber
- Pre/post processing
- Mask aligners
- Metallization
- Bonding
- Dr Bob Stevens, Geoff McBride

Projects

- Bioengineering [x 3 + 2]
- Aviation/Automobile [ongoing contract]
- X-ray detector front ends [x 2]
- Micro-fluidics [1]
- Laser target [1]
- Space components
 - Nano-thruster grids
 - Microcooler
 - StarTiger
- R&D is ongoing within project deliverables including next generation processing Presenter Geoff McBride Facility CMF

What is Powder Blasting?

- Etching patterns into substrates
- High velocity dry micro powder
- Where the substrate is exposed holes, tracks, and shapes are etched into the surface

Powder Blasting Processing

- Substrates: Brittle materials glass, silicon, graphite, quartz and sapphire
- Two lithographic processes
 - Negative wet resist
 - Dry film positive resist
- Both cases the exposed areas of the substrate are powder blasted
- Post processing removes resist

Powder Blasting Processing

- Substrates are fixed to a rotating turntable with in the chamber
- Gun rasters across the central axis of the table
- Air guns and extraction circulate the powder back to the collection hopper

Powder Blasting Processing

- Etch rate factors
 - Air pressure propelling the powder
 - Blaster gun raster/turntable
 - Powder size
 - Powder weight
 - Powder shape
 - Line width
- Resist etch rate 1:100 ratio

Line features

- Rough Edging
- Corner/junction depth can vary
- Wider lines etch faster
- 1400 micron etch for a 1000 micron line width realised

Hole Profiles

- Bath tub configuration
- Wider hole etches quicker
- Wall profile is curved ~70 deg
- Through holes of 500
 microns realized

Presenter Geoff McBride Facility CMF

Bio-structures

Bio-structures UroCath

Powder blasting: BAE Systems: MNT Gyroscope Lids

Chrome coated Pyrex7740 wafer with resist cavity mask defined

Final product. BAE System Gyroscope Lid

High Density Graphite Structure

Applications.

Ion Optics. Miniature Fuel Cells Tissue Scaffolds

Nanothruster

[™] MST Compressor for Joule-Thompson Cooler

Powder Blasting StarTiger

Early R&D for via holes and wave guide array

Future & Conclusion

- Line width reduction
- Deeper structures
- Multilayer structures
- Other materials
- Powder blasting facility development

Contact

Geoff McBride Central Microstructure Facility, The Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK E-mail: <u>g.mcbride@rl.ac.uk</u> http://www.cclrc.ac.uk/