

THIS PRESENTATION AIMS TO BE SHORT AND SWEET!

MICROCELLS for METASTRUCTURES

An long-term application of MNT to distributed space structures

Arnaud Lecuyot (SSTL), S.E. Hobbs (Cranfield CoA), I. Honstvet (EADS Astrium)

Warning & Acknowledgments

- Acknowledgements
 - EADS Astrium
 - EPRSC
- Warning

esa

- Doctoral work
- Long-term, exploratory
- Interest in process as much as product

OUTLINE

- Introduction: Context & Concept rationale
- Study Logic: Research flow, Methods & Tools
- Analysis: Mission & System analysis
- Analysis: System and subsystem design
- Discussion: Metastructures in context
- Conclusion

- Long-term (20 years) Systems Engineering to:
 - Fully realise the potential of MNT in space
 - Provide a long-term framework to space planners
 - Identify Technological points and requirements
- Systems Engineering Logic Applied
 - From Mission analysis to Requirement Flowdown
 - To include programmatics & "in context" analysis
 - Focus on distributed systems & structures

The Large Aperture Sensing Spectrum What's best, connected or freeflying?

esa

Introduction: MNT Attributes

Mission & System Overview

- For long λ RadioAstro
- In L1/L2 (& Earth)
- 32 x Mills-Cross array
- 5 cm accuracy
- 1 to 10 km Baseline D
- "Accordion" configuration

Mission – Solar Concentrator

Roflacto

Multiple MW beam

Earth Deflector

- For Earth/Moon Lunar Power System
- In ~6000 km Orbit
- 1 km x 1 km
- Parabolic Configuration
- 1 arcmin accuracy
- Lifetime 5 years

System Trade-offs

Cranfield College of Aeronautics

• Link Configuration

• Microcell patterns

System Design - Simulations

Reference metastructure

Unlinked structure (1000 km)

Basic controlled single pattern

System Design - Simulations

Interferometer

Convergence of Interferometer structure with various baseline change from 10/10th

L1 Simulation

Baseline Changes

Cranfield College of Aeronautics

System Design - Simulations

Solar Concentrator

Solar Concentrator Basic pattern RMS Error

System Design – Cell layout

Global Cell

System Design – Cell systems

- Mass 340/380 g (L/G)
- Power 800/1100 mW
- Simple sensor Tech
- Micropropulsion (350 Ns)
- DH in Monolithic Wafers
- Similar to simpler "WaferSat"

Link inclination strain sensing

Position Local Magnetic sensing

- Baseline & costing
 - Interferometer
 - L1 perf 0.02 m
 - 100 kg, 80 MEuro
 - Long links (>10 m)
 - Solar Concentrator
 - Earth perf 0.014 m
 - 2 tons, 170 MEuro
 - Short lifetime
 - NRE 340 MEuro

- Issues
 - Lifetime of cells
 - Better Controller
 - Lock-up links
 - Launch & Stowing

- Alternatives
 - Deployables
 - Inflatables/Active
 - Formation Flying

- SWOT Analysis
 - Strengths
 - Robust Arch, shape change
 - Weaknesses
 - Dynamics, Low Maturity
 - Opportunities
 - Applications, MNT use
 - Threats
 - FF perf, High NRE cost

Start with mission, applications, Requrt analysis

esa

