MINIATURISED CAPILLARY PUMPED FLUID LOOP : A REALITY FOR ELECTRONIC THERMAL DISSIPATION

EAD

With the participation of ESA/ESTEC and CNES

SCOPE

<u>3 kind of thermal problems :</u> cause of limited performances

Miniaturised Capillary Pumped fluid loop : a reality for electronic thermal dissipation, Source Nordwijk 28 April 2004

SCOPE

<u>3 kind of thermal requirements:</u> Which are future <u>Key Success</u> <u>Factors</u>

CANDIDATE SOLUTIONS

Copper or Metal Matrix

Mini HP (early 90) (ASTRIUM, ...)

Mini fluid loop (96) (ASTRIUM/ESTEC mini-loop)

Miniaturised Capillary Pumped fluid loop : a reality for electronic thermal dissipation, Nordwijk 28 April 2004

HOW DOES LHP WORK ?

EADS

THERMAL PERFORMANCES OF <u>EXISTING</u> SOLUTIONS

Designation	STATUS	Evaportor size	Weight " W " (kg)	Temperature NOP (°C)	Temperature OP (°C)	Maximal power load(W)	Transport length "L" (m)	Overall conductance "C" (W/K)	Performance ratio C.L/W
Copper conduction	Space qualified	1	8900 kg/m3	/	1	1	1	700 W/m/K	0.08 W.m/kg.K
Mini-Heat pipe	Space qualified	1	0.08	-50 / 110	50/110	20 W	0.15	1.1	2 W.m/kg.K
Mini BF 1° generation	Prototype	30 x 30 x 15 mm	0.1	-50 / 60	-20 / 50	15 W	1	0.2	2 W.m/kg.K
Specifications	Prototype	30 x 30 x 15 mm	< 100 g	-50/90	-50 / 90	30 W	0.5	> 0.8	> 4 W.m/kg/K

Most of the future thermal hardware needs is not yet covered.

It will be the main challenge of the decade

Miniaturised Capillary Pumped fluid loop : a reality for electronic thermal dissipation, Nordwijk 28 April 2004

TRADE-OFF ON DIFFERENT BREADBOARD CONCEPTS

During 4 years more than 200 tests were performed on about 10 different mini-LHP design, in order to improve performance and reliability

Miniaturised Capillary Pumped fluid loop : a reality for electronic thermal dissipation, Nordwijk 28 April 2004

PERFORMANCE EVOLUTION

Since 2000, the thermal performance of the LHP as tripled 2.0 W/K 1.8 W/K 1.6 W/K _____ 1.4 W/K × 1.2 W/K

MINI-LHP STATUS

The final mini-LHP design is fully compliant with our requirements with :

- Evapo mass : 40 g
- Evapo size : 26 x 26 x 19 mm
- LHP mass : 80 g
- Tube size : ID 1.6, OD 2 mm
- Tube length up to 2 x 0.5 m
- Proof pressure : 150 bars
- Burst pressure : 478 bars
- QS : 250 g
- Sine : 20g on 20-100 Hz
- Random80 gRMS (0.1-2 kHz)
- He leak : $< 10^{-9}$ atm.cm³/s
- Tube flexibility : < 1 kN/m
- OP Temperature : -20/+90°C

FA

Miniaturised Capillary Pumped fluid loop : a reality for electronic thermal dissipation, Nordwijk 28 April 2004

TEST OF A MINI-LHP ON A BOARD

The mini-LHP has been functionally tested in different configuration (vacuum, against gravity,...), an Infra-red imagery of a mini loop start-up shows the impact of the LHP working on the temperature of a board

Page 10

Miniaturised Capillary Pumped fluid loop : a reality for electronic thermal dissipation, Nordwijk 28 April 2004

QUALIFICATION TESTS OF A MINI-LHP 1/3

An example of the mini LHP behaviour for different power load and condenser temperature

🛋 Nordwijk 28 April 2004

QUALIFICATION TESTS OF THE MINI-LHP 2/3

The following qualification tests have already been performed on the Mini-LHP :

Miniaturised Capillary Pumped fluid loop : a reality for electronic thermal dissipation, Nordwijk 28 April 2004

QUALIFICATION TESTS OF A MINI-LHP 3/3

➤ Two mini-LHP have been delivered for flying mid 2004 onboard next A5 ECA launcher.

> Another LHP will be delivered end of this year for flying mid 2005 onboard Russian launcher

➤ A life test campaign of more than 2 years on 6 mini-LHP will start in mid 2004

At mid 2005 the mini-LHP will be fully qualified and ready for commercial applications.

Miniaturised Capillary Pumped fluid loop : a reality for electronic thermal dissipation, Nordwijk 28 April 2004

MINI-LHP APPLICATIONS

At this time the mini-LHP is already identified and planned in order to be implemented in :

- Start tracker component (2 to 5 W applications)
- New small & powerful electronic equipment (10 to 20 W)
- LASER cooling (50 W to 100 W)

EADS-ASTRIUM MINI-LHP POSITIONNING

Designation	STATUS	Evaportor size	Weight " W " (kg)	Temperature NOP (°C)	Temperature OP (°C)	Maximal power load(W)	Transport length "L" (m)	Overall conductance "C" (W/K)	Performance ratio C.L/W
Copper conduction	Space qualified	1	8900 kg/m3	1	1	1	1	700 W/m/K	0.08 W.m/kg.K
Mini-Heat pipe	Space qualified	1	0.08	-50 / 110	50/110	20 W	0.15	1.1	2 W.m/kg.K
Mini BF 1° generation	Prototype	30 x 30 x 15 mm	0.1	-50 / 60	-20 / 50	15 W	1	0.2	2 W.m/kg.K
Mini LHP EADS-AST	PFM	26 x 26 x 19 mm	0.08	-50 / 90	-20 / 90	100 W	1	1.8	22 W.m/kg.K
Specifications	Prototype	30 x 30 x 15 mm	< 100 g	-50/90	-50/90	30 W	0.5	> 0.8	> 4 W.m/kg/K

This hardware is about 250 times better than classical conductive straps, and 10 times better than heat pipes. For heat length of 1m

Miniaturised Capillary Pumped fluid loop : a reality for electronic thermal dissipation, Southermal Action Nordwijk 28 April 2004