

Evaluation of Adhesive Materials for use in High-Reliability Flip-Chip Assembly

Finbarr Waldron, NMRC, Cork, Ireland.

Programme Aims & Objectives

- Evaluate reliability of commercially-available flip-chip adhesives for use in space applications.
- Study a representative range of materials.
- **Determine thermomechanical properties & behaviour.**
- Assess quality of assembly achievable.
- Measure thermal performance.
- Investigate ability to withstand harsh environmental stresses.

Work Undertaken by:

- NMRC, Cork, Ireland (Prime Contractor)
- ASTRIUM, Velizy, France (VFL substrates)

Presentation Outline

- Introduction +
- Flip-Chip Assembly Technologies
- Evaluation Programme:
 - Approach
 - > Materials Evaluation
 - > Test Vehicle Details, Assembly & Verification
 - Reliability Testing
 - **Results to Date**
- Conclusions / Summary / Acknowledgements

Traditional Packaging Technologies:

Traditional Packaging Technologies:

- Advantages:
 - Well proven technologies
 - Robust & Reliable (especially ceramic & metal-can)
 - Good thermal performance (ceramic / metal)
 - Cost-effective (plastic)
- Drawbacks:
 - More complex than necessary
 - Electrical performance
 - Limited density
 - Size & weight

Flip-Chip Packaging:

- What?
 - > Direct attachment of the IC to a substrate
- Why?
 - Almost zero interconnection parasitics between chip and package
 - > Possible to put chips almost edge to edge
 - High packing density of ICs
 - Standard PCB: 10% of area occupied by silicon ("packing density")
 - Flip-chip PCB: 75% packing density
 - Very short interconnect high speed

IC edge to edge distance using plastic packages

IC edge to edge distance using flip-chip

Comparison of Alternative Packaging Options:

ype	<u>Footprint Area</u>
)FP:	900 mm² - 100%
TAB:	400 mm² - 44%
COB:	225 mm ² - 25%
CSP:	115 mm ² - 13%
lip-Chip:	100 mm² - 11%

(Source: Hewlett Packard)

Flip-Chip Packaging Examples:

Presentation Outline

- Introduction
- Flip-Chip Assembly Technologies
- Evaluation Programme:
 - Approach
 - > Materials Evaluation
 - > Test Vehicle Details, Assembly & Verification
 - Reliability Testing
 - **Results to Date**
- Conclusions / Summary / Acknowledgements

Solder-based Flip-Chip Assembly:

- Controlled Collapse Chip Connection (C4)
- Originally developed by IBM in 1960's.
 - Form solder bumps on chip pads
 - Mask & deposit
 - Plated bumps
 - Place chip on substrate & align accurately
 - Reflow (high temp.)
 - Underfill (increases bond area reduces stress)

Adhesive-based Assembly:

- Chip bumps not always required
- Typical bump metalisation Ni/Au (Electroless deposition)
 - Adhesive applied to substrate (blanket or selective deposition)
 - Place & align chip
 - Cure adhesive (usually low temp. process).

Solder Flip-Chip Assembly:

Robust Rigid Connection, but Joint Stresses are High

Solder Flip-Chip Assembly:

Typical Solder Flip-Chip Process Flow

Solder-based Flip-Chip Assembly:

- Advantages:
 - Very robust joints
 - Solder wetting forces aid alignment during reflow
 - Good thermal performance heat transfer through joints
 - Good electrical performance
 - High density, small size & weight
- Disadvantages:
 - Thermo-mechanical stresses can be high joints unyielding
 - Requires very well controlled assembly / reflow process
 - High temperature process
 - Cost need high density to justify additional cost.

Adhesive-based Flip-Chip Assembly:

Advantages of Adhesives:

- Compliant nature low stresses
- Easy assembly process low temp, no fluxes
- Fine pitch capability

Three Principal Adhesive Families:

- Anisotropic Conductive Adhesives (ACA)
- Isotropic Conductive Adhesives (ICA)
- Non-Conductive Adhesives (NCA)

Drawback:

Long-term reliability for certain applications questionable

Anisotrtopic Conductive Adhesives (ACAs)

- Need not be selectively deposited
- Low filler particle loading
- Particles form connections when adhesive is compressed
- Z-axis conduction only
- Filler types:
 - > Au-coated polymer spheres
 - > Solid metal spheres (plated)
 - > LMP Solders (Sn-Bi)

Isotropic Conductive Adhesives (ICAs)

- High filler particle loading (typically Ag flake)
- Conductive in all directions
- Must be selectively deposited:
 - Screen / stencil printing with very accurate alignment
 - Transfer by contact with thin film

- Deposited on entire placement area
- Non-conductive no filler particles
- Connection formed by pressure
- Connection maintained by high shrinkage forces after cure
- Connection quality enhanced by surface asperities
- Can be used with fusible solder coatings on contact surfaces
 - > Reflow after high-temp cure
 - Robust connection

Presentation Outline

- Introduction
- Flip-Chip Assembly Technologies
- Evaluation Programme:
 - Approach
 - > Materials Evaluation
 - > Test Vehicle Details, Assembly & Verification
 - Reliability Testing
 - **Results to Date**
- Conclusions / Summary / Acknowledgements

Aims & Objectives:

- Evaluate reliability of commercial flip-chip adhesives for use in space applications
- Adhesive materials will include ICAs, ACAs & NCAs
- Key factors affecting reliability will be studied:
 - > Basic material properties / behaviour
 - > Quality of assembly achievable
 - > Thermal performance
 - > Ability to withstand environmental stresses

Phase 1: Materials & Technology Selection and Procurement

- > Selection of Adhesives & Physics-of-Failure Investigation (NMRC)
- > Design & Fabrication of Flip-Chip Test Chips (NMRC)
- > Design & Fabrication of VFL Substrates (Astrium)
- Phase 2: Manufacturing & Reliability Evaluation of Test Samples
 - > Assembly of Test Structures & Non-Des. Evaluation (NMRC)
 - > Reliability Performance Testing (NMRC)

Summary of Selected Materials

Anisotropic Conductive Adhesives (ACA)

- Loctite 3441 Anisotropic Conductive Adhesive, Gold-coated polymer filler.
- Loctite 3446 Anisotropic Conducive Adhesive, Fusible Bismuth Spheres filler.
- Bondline 2909 Anisotropic Conductive Adhesive, Gold-coated polymer filler.
- Creative Materials Inc. CMI 121-23, Anisotropic Conductive Adhesive, Silver flake filler.
- Dexter TG 9001 R1 Anisotropic Conductive Adhesive, Gold particle filler.

Isotropic Conductive Adhesives (ICA)

- Loctite 3880 Isotropic Conductive Adhesive Silver flake filler.
- Delo ICABOND IC182 Isotropic Conductive Adhesive Silver flake filler (75% wt.)
- Bondline 2920 Isotropic Conductive Adhesive Silver Flake filler.
- Creative Materials Inc. CMI 118-06-SD -Isotropic Conductive Adhesive Silver (74% wt.)

Non-Conductive Adhesives (NCA)

- Loctite 3565 Non-Conductive Underfill Adhesive
- Hysol QMI 536 Non-Conductive Adhesive, PTFE-filled.
- Creative Materials Inc. CMI-122-24 Non-Conductive Low-Stress Underfill Nitride filler.
- Bondline 6900 Low Viscosity Non-Conductive Underfill Adhesive

Microelectronic Packaging Technologies Workshop, ESTEC, 28-04-2004

Materials Property Evaluation Results

Key Material Properties Measured:

- Coefficient of Thermal expansion (CTE) Thermo-mechanical Analyser (TMA)
- Glass Transition temperature (T_g) Differential Scanning Calorimeter
- Young's Modulus (ε) DMTA / Instron Tester
- Lap Shear Strength Instron Tensile Tester

Adhesive	Туре	Measured Tg (°C)	Datasheet T _g (°C)
Loctite 3441	ACA	146.3	150
Loctite 3446	ACA	151.7	156
Bondline 2909	ACA	117.8	121
CMI-121-23	ACA	107.3	105
Dex TG9001-R1	ACA	109.3	110
Loctite 3880	ICA	95.3	64
Delo AC-182	ICA	86.7	90
Bondline 2920	ICA	110.6	113
CMI-118-06	ICA	98.1	100
Loctite 3565	NCA	145.3	155
Hysol QMI 536	NCA	N/a	-31
CMI 122-24	NCA	95.3	127
Bondline 6900	NCA	125.4	Not Quoted

Measured Glass Transition Temperature (Tg) Values v Datasheet Values.

Materials Property Evaluation Results

	Measured Values		Datasheet Values	
Adhesive	CTE below Tg (ppm)	CTE above T _g (ppm)	CTE below T _g (ppm)	CTE above T _g (ppm)
Loctite 3441	57.3	151.2	55	140
Loctite 3446	54.0	147.8	55	140
Bondline 2909	36.3	104.1	35	100
CMI-121-23	58.7	160.2	Not Quoted	Not Quoted
Dex TG9001-R1	70.1	154.2	67	Not Quoted
Loctite 3880	68.7	191.2	110	188
Delo AC-182	88.3	197.2	Not Quoted	Not Quoted
Bondline 2920	76.7	173.2	79	189
CMI-118-06	28.7	148.2	17	147
Loctite 3565	28.7	92.4	25	80
Hysol OMI 536	N/a	190.9	93	174
CMI 122-24	38.2	160.2	55	168
Bondline 6900	60.5	120.1	31	31

Measured CTE Values v Datasheet Values.

<u>Conclusions - Material Properties Measurements:</u>

- CTE, Tg and Bond Strength show reasonable agreement with manufacturer's values (where quoted).
- For CMI-122-24, Measured $T_g = 95.3^\circ$ (Manufacturer's $T_g = 127^\circ$ C).
- In many cases Tg < 125°C
- Modulus values not quoted in many cases.
- Bond strengths generally high, butLoctite 3565 has quoted bond strength of 4.9 MPa.

Microelectronic Packaging Technologies Workshop, ESTEC, 28-04-2004

Thermo-mechanical Modelling

ACA:

Blanket deposited ACA with thickness = $8.0 \ \mu m$

Selectively-deposited ICA with thickness = $8.0 \,\mu m$

Blanket-deposited NCA No adhesive assumed in joints

Microelectronic Packaging Technologies Workshop, ESTEC, 28-04-2004

8 µm

Thermo-mechanical Modelling Results

ACA Results:

Finite Element Model at +125°C showing worst case stress condition for ACA materials.

- Acts as own underfill large bond.
- Compliant & relieves stress.
- Stress negligible at each temp (-55°C and +125°C).
- Unlikely to fail due to stress
- Conduction may be disrupted by movement – 3 µm possible.

ICA Results:

Finite Element Model at +125°C showing worst case stress condition for ICA materials.

- Smaller bond area.
- Also compliant.
- Stresses higher than ACA, but still low overall.
- Unlikely to fail due to stress
- High filler density less Affected by movement.

NCA Results:

Finite Element Model at -55°C showing worst case stress condition for NCA materials.

- No adhesive in joint area.
- Compliant.
- Slightly higher stresses than ACA.
- One material could fail due to stress > bond strength (Loctite 3565).

Conclusions – Materials Evaluation

- Greatest choice of adhesives for flip-chip assembly were in the ACA category.
- Measurement of CTE for all of the selected materials showed good agreement with manufacturers values (where quoted).
- Measurements of T_g for the adhesives also agreed closely with the manufacturers figures (except one NCA CMI-122-24 where $T_g = 95.3^\circ$ (CMI $T_g = 127^\circ$ C).
- T_g in many cases is lower than the target 125°C upper operating temperature.
- Modulus information not quoted for many adhesives.
- Expected stresses in all materials are low due to their compliant / soft nature.
- ACA may be prone to movement of up to 3.0 μm leading to a risk of open circuits.
- **ICA also prone to risk of movement, but open circuits less likely due to filler density.**
- Highest risk of stress failure is with NCA material (L 3565) at 125°C where model predicts Von Mises stress of 3.9 MPa. Loctite 3565 has quoted bond strength of 4.9 MPa.

Phase 1: Materials & Technology Selection and Procurement

- Selection of Adhesives & Physics-of-Failure Investigation (NMRC)
- > Design & Fabrication of Flip-Chip Test Chips (NMRC)
- > Design & Fabrication of VFL Substrates (Astrium)
- Phase 2: Manufacturing & Reliability Evaluation of Test Samples
 - > Assembly of Test Structures & Non-Des. Evaluation (NMRC)
 - Reliability Performance Testing (NMRC)

Flip-Chip Test Chip (FCTC1)

Test Structure Summary

- I Polysilicon Heater Resistor
- 6 Temp-Sensing Diodes
- I Triple-track Corrosion Monitor
- 14 Peripheral Daisy Chains
- 1 Pad Array (23 X 23)
- Unit size = 5 mm X 5 mm
- Pad size = 100 μm X 100 μm
- Pad Pitch = 200 μm

FCTC1 Specification

<u>Corrosion Monitor</u>		<u>Flip-Chip Pad Array</u>	<u>v</u>
Line Width:	5 μm	Line Width:	10 µm
Line Spacing:	4 μm	Line Lenth:	320 μm
Line Lenth:	43 µm	Thickness:	1 μm
Thickness:	1 μm	Resistance:	1.5 Ω
Resistance:	270 Ω		
Max Bias:	20 V		
Heater Resistor			
Dimensions:	4,594 μm X 4,531 μm		
Area:	20.82 mm ²		
Resistance:	20 Ω		
Max Power:	3.5 W		
Temperature-Sensin	ng Diodes		
Fwd V @ 1 μA:	0.45 V		
<u>a</u> 10 μA:	0.50 V		
<u>a</u> 100 μA:	0.55 V		
Breakdown:	80.0 V		

Microelectronic Packaging Technologies Workshop, ESTEC, 28-04-2004

30

Test Chip Verification

Flip-Chip Pad Array

Corrosion Monitor Structure

Temp Sensing Diode

Heater Resistor Interconnect

Fabrication Details:

- NMRC 1.5 µm CMOS Process
- 6 4" Wafers Fabricated
 - > 1,152 Chips
- **Verification:**
- Optical / SEM Inspection
- Functional Test
 - > Overall Yield = 90.5%
 - > 1,042 functional chips
 - > 840 Required

Wafer Bumping

Bumping Details:

- PacTech GmbH, Nauen, Germany
- Electroless Ni/Au Metalisation
- Ni = $6.0 \ \mu m$
- $Au = 0.5 \ \mu m$

Verification:

- Optical / Electron Microscopy
- Cross-section
 - > Quality check
 - > Thickness measurement
- EDX Analysis
 - > Compositional Check

Phase 1: Materials & Technology Selection and Procurement

- Selection of Adhesives & Physics-of-Failure Investigation (NMRC)
- > Design & Fabrication of Flip-Chip Test Chips (NMRC)
- > Design & Fabrication of VFL Substrates (Astrium)
- Phase 2: Manufacturing & Reliability Evaluation of Test Samples
 - > Assembly of Test Structures & Non-Des. Evaluation (NMRC)
 - > Reliability Performance Testing (NMRC)

Astrium VFL Substrate Technology

Typical VFL Substate

Very Fine Line (VFL) Technology

- High-reliability Hybrid & MCM substrates
- Thick-film-based technology
- Ceramic & glass materials
- 38 µm track & gap
- 38 µm via diameter (excimer laser drilled)
- Multiple interconnect layers

VFL Substrate Layout

Microelectronic Packaging Technologies Workshop, ESTEC, 28-04-2004

VFL Substrate Details

Single Chip Site Details (5 mm X 5 mm)

IC1 View side pad

Daisy Chain Details

- 2 daisy chains per chip
- Continuity & isolation measurements
- 2 inputs, 2 outputs & 2 intermediate
- 1 set of heater & diode connections

VFL Substrate Details

3 X 3 Chip Site Details (15 mm X 15 mm)

Details

- 2 daisy chains per single chip
- Continuity & isolation measurements across full area of 10 mm X 10 mm chip.
- 2 inputs, 2 outputs & 11 intermediate connections in total.
- Only 2 intermediate connections for dice 4,5,6
- 6 sets of heater & diode connections

Microelectronic Packaging Technologies Workshop, ESTEC, 28-04-2004

VFL Substrate

VFL Substrate – Optical Inspection

Substrate Verification:

- Electrical continuity
 - > Flying probe tester (Astrium)
- Optical & SEM Inspection (NMRC)
 - > Dimensions & pitch etc. correct
 - > Metalisation quality / composition
- Metal tape adhesion test
- 80 manufactured / 60 required

VFL Substrate – SEM Inspection

Phase 1: Materials & Technology Selection and Procurement

- Selection of Adhesives & Physics-of-Failure Investigation (NMRC)
- > Design & Fabrication of Flip-Chip Test Chips (NMRC)
- > Design & Fabrication of VFL Substrates (Astrium)
- Phase 2: Manufacturing & Reliability Evaluation of Test Samples
 - > Assembly of Test Structures & Non-Des. Evaluation (NMRC) -
 - Reliability Performance Testing (NMRC)

Process Flow:

NMRC Fineplacer 145 PICO Chip Bonder

ACA Flip-Chip Bonds

Example (1) - Bondline 2909 ACA:

- Recommended cure:
- NMRC optimised cure:

175°C for 30 sec @ 35 Mpa

140° for 30 sec, 160°C for 5 sec Joint Loading = 40 MPa

- Bond Strength:
- Joint Resistance:

 \rightarrow Adhesive thickness = 7.0 µm (approx)

> 5 Kg shear force for 5 mm X 5 mm die (non destructive test)

4.0 to 9.0 Ω

Example (2) - Loctite 3565 NCA:

- Recommended cure:
- NMRC optimised cure:

 $150^{\circ}C$ for > 60 min

150° for 60 min Joint Loading = 50 Mpa

→ Adhesive thickness = 28.0 µm (approx) (between the joint areas)

• Bond Strength:

> 5 Kg shear force for 5 mm X 5 mm die (non destructive test)

• Average Joint Resistance:

10.0 **Ω**

Non DestructiveVerification:

- High Mag. Inspection
- X-Ray Inspection
- SAM Inspection
- Electrical Check
- Bond Test (5Kg Shear)
- Thermal Resistance

Destructive Verification:

- Bond Shear Test
- Microsection

Overview of Typical Completed Test Vehicle

Good Edge Fillet - ACA

NCA – Well Aligned

Good ACA Joint

Good ACA Joint

Good NCA Joint

Good NCA Joint

Illustrations of joints formed using Bondline 6900 NCA

ICA Joint

Microelectronic Packaging Technologies Workshop, ESTEC, 28-04-2004

46

Excess adhesive - ACA

Poor ACA Joint

Open NCA Joint

Misaligned NCA Joint

Main Problems Encountered:

- Partial Misalignment
- Excess Adhesive / Inadequate Pressure
 - > Open Circuit Joints

Verification of alignment quality by X-ray – noted to be good in this case.

Verification of adhesive coverage by SAM – note some thickness variation As with initial ACA samples.

Thermal Characterisation

Dual Cold Plate System

Schematic of NMRC DCP System

Key Features

- Two temp-controlled plates
- Boundary conditions well controlled
- Convection effects eliminated
- Heat paths controlled by selection of insulator or conductor plates

Thermal Characterisation

Summary of Thermal Conductivity Results

20 W/m °K
n °K
position
20 W/m °K
n °K
tivity result
)3 W/m °K
n °K (good sample)
n °K (bad sample)
helps result

Phase 1: Materials & Technology Selection and Procurement

- Selection of Adhesives & Physics-of-Failure Investigation (NMRC)
- > Design & Fabrication of Flip-Chip Test Chips (NMRC)
- > Design & Fabrication of VFL Substrates (Astrium)
- Phase 2: Manufacturing & Reliability Evaluation of Test Samples
 - > Assembly of Test Structures & Non-Des. Evaluation (NMRC)
 - > Reliability Performance Testing (NMRC) -

Reliability Test Plan

Reliability Testing

Monitored Thermal Cycling Test:

- Mil-Std-883E, Method 1010.7
- Upper Temp: +125° C
- Lower Temp: -55°C
- Dwell: 15 Min
- No. of Cycles: 500

Interim Tests (Every 100 cycles):

- Electrical Check
- Visual Inspection
- X-ray Inspection
- SAM Inspection
- Thermal Resistance

Anatech Event Detector 128-Channel Continuity Monitor

Reliability Testing

Monitored Thermal Cycling Test:

- JESD A-101 B
- Temperature: +85° C
- Humidity: 85% RH
- Bias: -10V / Gnd /+10V
- Duration: 1,000 hours

Interim Tests (168, 500 & 1,000 hrs):

- Electrical (Corrosion Monitors)
- Visual Inspection
- X-ray Inspection
- SAM Inspection
- Thermal Resistance

NMRC Weis-Technik Temperature / Humidity Chamber

Reliability Testing

Proposed DPA Procedure:

- Non-Destructive Tests:
 - Electrical Continuity / Isolation
 - > Optical Inspection
 - > SEM Inspection
 - > X-ray Imaging
 - > SAM Imaging
 - Thermal Resistance Measurement

Destructive Tests:

- > Shear Strength
- > Microsectioning

Anticipated Failure Modes:

- Thermo-mechanical:
 - Movement open circuits
 - Bond failure / adhesion loss
 - > Property changes above Tg
 - CTE intermittent opens
 - > Possible increase R θ jc
- Moisture-Induced:
 - Leakage currents / shorts
 - Corrosion / ionics
 - > Silver migration (ICA)
 - > Dendritic growths
 - > Adhesion Loss

Presentation Outline

- Introduction
- Flip-Chip Assembly Technologies
- Evaluation Programme:
 - Approach
 - > Materials Evaluation
 - > Test Vehicle Details, Assembly & Verification
 - Reliability Testing
 - **Results to Date**
- Conclusions / Summary / Acknowledgements

Conclusions To Date

- Adhesive will find difficulty meeting demands of harsh stress tests.
- Concern that Tg is much lower than + 125°C in many cases:
 - > Thermomechanical behaviour may be unpredictable.
 - > Materials may soften at elevated temperatures.
- ICA materials likely to be most reliable:
 - > Best electrical & thermal properties.
 - > Selective deposition lower risk.
 - > Ag content may lead to migration / dendrite issues.
- Corrosion filures likely to occur in THB test:
 - > Adhesives absorb moisture.
 - > *Non-hermetic protection.*
 - > Adhesives contain ionic elements.
- ACA & NCA likley to exhibit intermittent failures due to movement.
- Bond strength v. extpected stress a concern in NCA case.
- Microelectronic Packaging Technologies Workshop, ESTEC, 28-04-2004

- 18-month programme (NMRC & Astrium)
- Selection of candidate adhesive materials ACA, ICA, NCA
- Study factors affecting reliability:
 - > Material properties
 - > Thermal issues
 - > Assembly quality
- Test chip & substrate design
- Test sample assembly / Process optimisation
- Reliability tests (Thermal cycling & THB)
 - Interim performance assessments
 Final DPA

Acknowledgements

- **ESA / ESTEC Funding for Project**
 - > Alberto Boetti Technical Supervision & Guidance
- Astrium, Velizy, France
 - > Jean-Claude Tual Substrate Layout
 - Brigitte Braux Astrium Project Manager
- NMRC
 - **Gary Relihan Materials Properties**
 - > Denis O' Mahoney FE Modelling
 - > Adrian Mulcahy Assembly & Analysis Work
 - Eoin Sheehan Chip and Substrate Test