3D Microwave Module Packaging

Geert Carchon, PhD Program Manager Heterogenous RF Systems IMEC

Outline

Introduction

- Why 3D
- Various 3D flavours

• 3D RF modules using thin-film passives

- Thin film introduction
- Via requirements & estimated performance
- IMEC via approach
- Preliminary results
- Conclusions

Wireless communications So many applications ...

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

(NITA)))

This check to a graphic regularization pointing of the Tarte of Proposety classifications and by the PCC and RTM, A such 5 does not completely when it appendix to a functions and secret changes when is the Table of Proposity allocations. Therefore, for complete information, users is basic common to be

> U.S. DEPARTMENT OF COMMERCE National Telecommunications and Informat Office of Spectrum Management

The wireless convergence: more and more wireless standards are required in one terminal

- Smart phone: plenty of discrete devices and multiple radios in these applications (smart phones)
 - Take up large part of limited space in phone
 - Large cost for discrete components and complex board
 - dedicated solutions for each standard take up space, even if they are not used

Wireless communications So many applications ...

Introduction: RF-Packaging Drivers Miniaturisation of RF Electronic Systems

Enabling Technologies:

- -IC-integration: SOC
- -High density interconnection and packaging technologies:
 - SIP: "System-in-a-package"
- 3D integration

Introduction : Why 3D?

- Drivers for 3D interconnects & packaging :
 - -Size reduction:
 - Minimal area/volume of an electronic system
 - -Solving the "interconnect bottleneck" :
 - Long interconnects are too slow
 - Long interconnects consume too much power
 - -Hetero-integration:
 - "Seamless" mixing of different microelectronic technologies at the wafer level

3D packaging technology today

- Stacked-die packages
 - Assembly by wire bonding of stacked die in a single package
- High volume, mainly: portable phone application
 - various types of memory on cell-phone processor chips
- Technology
 - standard wire-bond packaging technology

Source: ChipPac

Different 3D-interconnect "flavors"

- 3D-SIP: "System-in-Package" Traditional packaging & interconnection technologies
 - Wire-bonded die stack
 - Stacking of packages: preferably SIP packages
- 3D-WLP: "Wafer-level-packaging" Technology for flip chip bumping, redistribution and CSP
 - 3D interconnects realized at wafer level
 - 3D interconnects processed post IC passivation
- 3D-IC and 3D-SIC: IC-foundry technology
 - 3D interconnects at local wiring hierarchy (3D-IC) or at intermediate or global wiring hierarch (3D-SIC)
 - 3D interconnects processed *post Front End and prior to Back End*

RF-IPD on AF45: 7x7 sqmm Bluetooth Module Example 3D-SiP stack

RF chip "flip-chip" mounted on rfintegrated passives substrate

High density laminate with SMD passives on top side and Digital Base band chip on Bottom side

National Semiconductor

Geert Carchon, May 22, 2007 imec 2007 10/32

3D-SiC "Cu nail" technology

B. Swinnen et al., IEDM 2006

3D-WLP / TSV for RF applications

- Substrate thickness 100 um
- Non-critical interconnect density & pitch
- Via and bump "RF functional"

Outline

Introduction

- Why 3D
- Various 3D flavours

• 3D RF modules using thin-film passives

- Thin film introduction
- Via requirements & estimated performance
- IMEC via approach
- Preliminary results
- Conclusions

SiP Interposer Technology

- Several Technologies Possible:
 - Ceramic / Laminate / Thin-film / ... -based MCM
- Thin film MCM-D offers
 - Wafer-level Processing
 - Photo-lithography defined features
 - Excellent control over lateral dimensions
 - High repeatability, high degree of miniaturization
 - Thin film deposited resistor & dielectric layers
 - · High density, high precision, repeatable, small tolerances
 - MMIC design style possible
- Substrate choice
 - AF45 Glass
 - low cost, good RF properties
 - Primarily 2D technology (vias using sandblasting)
 - HR-Si
 - thermal advantages
 - micro-machining capabilities (cavities, through-hole vias)
 - 3D stacking

RF-IPD Technology Multilayer Thin Film with Integrated Passives

Main Features

- Substrate: glass or HR-Si
- 3 metal planes : Al / Cu / Cu-Ni-Au
- Coplanar waveguide (CPW) lines
 - Electroplated Cu : 3-5 µm thick
 - Smallest feature size : width/spacing: down to 5 μm / 7.5 μm

- Resistors : TaN (25 Ω/²)
- Capacitors : Ta₂O₅ (0.72 nF/mm²) & BCB (6.5 pF/ mm²) & interdigital
- Inductors : 0.6 to 80 nH, Q : 30 150
- Flip-chip / wirebond interconnections
- Integrated vias on HR-Si

RF-IPD on AF45 Passive Circuits & Demonstrator Modules

MCM-D on HR-Si Why investigate HR-Si: Possibilities

- Possibilities
 - 2D & 3D Modules
 - Integrated cavity resonators
 - Integrated waveguides/filters

IMEC HR-Si IPD Platform Activities

<u>Core activity:</u>

HiRes Si technology with vias

<u>Activities</u>

- HR-Si technology development and optimization
 - vias, HR-Si
 - use of cavities vs. UTCS for RF devices
- RF component library development and RF-via design (AF45, HiRes)
- Technology reliability and thermal properties
- RF vs temperature / substrate resistivity influence on passive performance
- Interconnections at die-module and at module-module level
- Exploration of new devices:
 - •antennas, mm-wave functions (couplers, waveguide structures ...)
- Circuit/module demonstrators:
 2.4GHz 5GHz 17GHz 30GHz 60GHz 77 GHz 94GHz

RF-IPD on HR-Si Integrated Passives

- Surface passivation oxide-HRSi interface
 - fixed charges in oxide cause DC dependancy & performance spread
 - Ar implantation
 - increased performance
 - lower spread
 - lower DC-bias dependancy

RF-IPD on HR-Si Via Requirements

RF feedthrough optimization

- Wafer thickness Pitch
- Via diameter
 Compensation section (inductive)

DRIE etching

RF-IPD on HR-Si DRIE vs Wet Etched Vias

- Chosen wafer thickness 100um
 - Better performance
 - Smaller size
 - Wafer thinner than 100um too fragile
- DRIE etched vias
 - Better performance than wet
 - Smaller size (better for low freq. applications as well)

RF-IPD on HR-Si Through-Si-Via interconnects

- IMEC approach :
 - Via from back of the wafer
 - Thinning first approach
 - Use of a thick polymer isolation layer
 - Partial fill via hole by electroplated copper
 - Polymer fill remaining via hole

• Advantages:

- No holes in wafer topside
- Reduced capacitance through the use of thicker low-k isolation layers.
- Reduced thermo-mechanical stress : "compliant" through-hole structure
- Compatible with wafer-level packaging technologies

RF-IPD on HR-Si Application 3D-WLP TSV for HR-IPD integration

RF-IPD on HR-Si FIB on completed via (bottom)

RF-IPD on HR-Si Comparison MS on HRSi to CPW on Glass

Glass CPW (w/s=81/18um)

HRSi Microstrip (w=85um)

RF-IPD on HR-Si MS WLAN Filter

RF-IPD on HR-Si Coupled line filters at 30GHz

Standard

With transmission zeros

RF-IPD on HR-Si Coupled line filters at 60GHz and 77GHz

- 60GHz
 - IL: -2dB

- 77GHz
 - IL: -2.8dB

RF-IPD on HR-Si Cavity Filters 30GHz & 60GHz

RF-IPD on HR-Si Vialess transitions

- CPW to CPW
 - 0.1 dB loss / transition
 - RL < -20dB: 20-50GHz

- CPW to microstrip
 - <0.2 dB loss / transition @ 20GHz</p>
 - RL < -20dB: 18-24GHz

Geert Carchon, May 22, 2007 imec 2007 30/32

Micro-bump joining

- Flip-chip interconnect scaling
- With solder joint scaling, the intermetallics formed by UBM solder interaction are of increasing importance
- For the smallest flip chip pitches : only intermetallic compounds after solder bump reflow

Micro-bump joining

Micro-bump

- Similar to flip chip interconnect,
- uses a low temperature melting metal or alloy and realizes an inter-metallic connection.
- However:
 - Small dimension : no solder 'ball', typically < $10\mu m$ thick
 - Connection by thermo/compression-reflow method
 - Entire solder volume is transformed into an intermetallic compound.
 - Thin connection, allows for small thickness variation across the die and bonding substrates (< solder thickness/2)

Conclusions

- 3D is an enabling technology for the realization of miniature RF components
 - Minimal footprint
 - Increased functionality in reduced volume
 - High performance interconnection of heterogenous technologies
 - Various RF application areas
 - 3D modules, e.g. using TF technology
 - MEMS packaging
 - Antenna integration
 - Small vias required
 - Minimize area
 - Higher operating frequency
- Acknowledge ESA 3DMoP Project

Questions: Geert.Carchon@imec.be

aspire invent achieve

Target specifications for 3D 'flavors'

	3D-SIP	3D-WLP		3D-SIC
Technology	Package interposer	WLP, Post-passivation		Si-foundry, Post FEOL
3D interconnect	Package I/O	UTCS Embedded die	TSV (Through- Si Vias)	Si-through "Cu nail" vias
Intercon. Density	<pre>'package-to- package'</pre>	'around' die	'through' die	'through' die
Peripheral	2 - 3 /mm	10 - 50 /mm	10 - 25 /mm	25 -100 /mm
Area-array	4 - 11/mm²	100 - 2.5k/mm²	16 - 100/mm²	400-10k/mm ²
3D Si Via pitch	-	-	40 – 100 μm	< 10 µm
3D interconnect pitch	300 – 500 μm	20 – 100 µm	-	-
3D Si Via diameter	-	-	25 - 100 µm	1 - 5 µm
Die thickness	> 50 µm	10 - <u>20</u> μm	<u>50 - 100</u> µm	<u>10</u> - 20 µm
imec			Geert Carchon imec 20	, May 22, 2007 07 36/32

RF-IPD on HR-Si Wet Etched Vias RF feedthrough

Wth	Top D	Bottom D
100um	30um	175um
200um	30um	320um

Thinner wafer

- Better return loss
- Lower insertion loss
- Considerably smaller (constant etching slope)

RF-IPD on HR-Si DRIE Etched Vias RF feedthrough

- D=100um
- Thinner wafer
 - Better return loss
 - Lower insertion loss
 - Smaller (lower pitch and shorter matching section)

Insertion Loss (dB)

RF applications

3DMoP Project Objectives 3D Microwave Module Packaging

- Investigation of packaging issues and solutions for 3D stacked microwave modules target frequency = 1...30GHz
 - Optimization of the high-resistivity Si substrate and MCM-D technology for highquality RF components
 - Design and integration of through-substrate vias
 - For the realization of RF feedthroughs
 - To connect ground layers on different layers, preventing parasitic modes and its associated coupling
 - Interconnections at the die-module and at module-module level
 - Exploration of the improvements and limitations of the concept with respect to thermal performance and thermo-mechanical reliability

 Optimization of the high-resistivity Si substrate and MCM-D technology for high-quality RF components

- Optimization of the high-resistivity Si substrate and MCM-D technology for high-quality RF components
- Design and integration of through-substrate vias
 - For the realization of RF feedthroughs
 - To connect ground layers on different layers, preventing parasitic modes and its associated coupling.

- Optimization of the high-resistivity Si substrate and MCM-D technology for high-quality RF components
- Design and integration of through-substrate vias
 - For the realization of RF feedthroughs
 - To connect ground layers on different layers, preventing parasitic modes and its associated coupling.
- Interconnections at die-module and module-module level

- Optimization of the high-resistivity Si substrate and MCM-D technology for high-quality RF components
- Design and integration of through-substrate vias
 - For the realization of RF feedthroughs
 - To connect ground layers on different layers, preventing parasitic modes and its associated coupling.
- Interconnections at die-module and module-module level
- Exploration of the improvements and limitations of the concept with respect to thermal performance and thermomechanical reliability

