SEE and TID Radiation Test Results on ST Circuits in 65nm CMOS Technologies

Final Presentation of ESTEC Contract 2006-2007 No. 18799/04/NL/AG, COO-3 Under the supervision of Mr. Reno Harboe Sørensen D/TEC-QCA Final Presentation Day 2009

January 2009

Philippe Roche

Central CAD & Design Solutions STMicroelectronics Crolles, France

Headline

Description of the circuits tested during the project

- ST 65nm BULK CMOS technology at a glance
- overview of the 5 Device-Under-Test
 - reference circuits for process/library qualifications and radiation studies
 - 46 Mb SRAMs overall
 - ~ 1 M Flip-flops overall

Test plan performed during 7 months over 2006-2007

- Highlight for main parameters
 - ~600 test runs performed overall

Main test results for Single Event Effects (SEE)

- verifications for latchup and hard fail immunities
- counting for multiple cell and bit upsets
- R&D digression on a 16Mb prototype SRAM in SOI 65nm
- measurements of heavy ion and proton cross-sections for BULK 65nm SRAMs and FFs
- impacts of VDD, high temp. and test facility on the SEU cross-sections

Main test results for Total Ionizing Dose (TID)

evidences of gamma immunity at 100 krad

Conclusion & Perspectives 2009

65nm Technology Platform

65nm: Technology benefit Summary

Technology	90 LP Hvt	90 LP Svt	90 GP Hvt	90 GP Svt	65 LP Hvt	65 LP Svt	65 LP Lvt	65 GP Hvt	65 GP Svt	65 GP Lvt
Relative speed	12.2	8.0	8.8	6.0	12.6	8.0	6.6	6.9	5.1	4.02
(Realistic design critical path: delay wc, ns)		+20% speed (+50% with GP-LV					T)			
Leakage - 25C	0.12	3.5	8.3	81	0.07	1.9	35	35	269	1996
(mA/MGates)			2X re	duction						
Leakage – 125C	6.1	77	115	653	2.6	47	338	268	1671	5772
(mA/MGates)					2.6X re	duction				
Dynamic Pwr	9.1	9.3	7.4	6.5	5.6	5.7	6.1	3.9	5.1	5.5
(ND2, nW/MHz)					→ 40	to 50% r	eductior			

Moving from 90nm to 65nm brings

- 50% area reduction for logic and SRAM
- In to 20% speed performance improvement; extra 25% speed with GP-LVT
- In to 50% dynamic power reduction
- In to 2x leakage reduction at same speed @ 25C, > 2.5x @ 125C

65nm design platform qualified since May 2007

65nm mass production at ST Crolles 12" (300mm wafers) plant since Mid 2008 Second source 12" qualified in Taiwan

Overview of tested testchips in 65nm

4 testchips in ST BULK CMOS 65nm embedding SRAMs and shift registers (FFs)

- Testchips for Soft Error Rate characterizations of libraries **0** + **2**
- Testchip for validation of rad-hard terrestrial UHD SRAM 3
- Reference circuit for libraries validation and qualification and <u>PRO</u>cess MOnitoring in the time
 - SRAMs, ROMs, standard cells, via chains (back-end stress), ring oscillators (speed meas.), dividers (delay path meas.), IOs, Fuse : 75 M transistors

- SRAM prototype 16Mb in SOI 65nm
 - not commercially available
 - SOI usage limited at ST so far to specific (RF/mobile) products

all testchips pre-characterized by ST with alphas and atmospheric neutrons (terrestrial)

all test set-ups developed by ST and kindly reused for this contract at no cost

Testchip overall contents

A total of 46.5 Mbits of SRAMs and ~1 M of Flip-flops tested with space radiations

- **a** 4 SRAM areas : 0.52μ2, 0.62μ2, 0.67μ2, 0.98μ2
- 2 SRAM architectures : SP (single port) and DP (dual port)
- 2 technologies : BULK and SOI
- 2 Threshold Voltages : Standard and High VT (ultra low power)
- 6 flip-flop types from production libraries
- I SRAM covered by 2 eDRAMs (hardened against atmospheric neutrons not space radiations)

Testchip name Techno option		Macrocell	Device area	Deep-N-Well	Size
SERVAL ST		SRAM	0.67µm² (H∨T/S∨T)	no	2Mb
		SRAM	0.67 µm² (HVT/HVT)	no	2Mb
		SRAM	0.62µm² (logic Vt)	no	2Mb
		SRAM	0.62µm² (HVT/HVT)	no	2Mb
		shift-register	FF1 (ref plain FF)	no	96K
PROMO		SPHS	0.525µm²	no	8.5Mb
		DPHD	0.98µm²	no	1Mb
RPD11-14	1-14 CMOS065LP		0.525µm²	yes	4Mb
SERVAL65		DPHD SPHS	0.98µm² 0.525um²	both hoth	1Mb 2Mh
		SPREG	0.62µm²	both	2Mb
		shift-register	FF1 (ref plain FF, X4, 13T)	both	199K
		shift-register	FF2 (plain, X35)	both	159K
		shift-register	FF3 (plain, X4, 9T)	both	194K
		shift-register	FF4 (clear, x4, 13T)	both	194x2K
ROBUST					
Testchip name	Techno option	Generator	Bitcell area	Deep-N-Well	Size
Rpd11-14	CMOS065 LP	SRAM	0.525µm²	yes	4Mb
SOI6516Mb	SOI65 HP	FSL	0.64µm²	na	16Mb

Reminders about ST Deep-NWeII (DNW) layer and rad-hard rSRAM[™]

DNW is reversed-biased N+ buried layer qualified as a standard process option

- Moise reduction from the substrate
 - P-Well electrical isolation for power reduction in SRAMs

DNW efficiency to annihilate SEL proven in ST 90nm at VDD+40% and 125 °C

used in ~70% of all pacemakers and defibrillators from 2010

Comments on ion penetration depth and Multiple Upsets

Simulations were run to verify that lowest experimental ion-LET can cross through the BEOL

SRIM modeling of 7 thin + 2 thick metal layers + Inter-Metal Dielectrics (SiO2)

Multiple Cell Upsets (MCU) are not Multiple Bit Upsets (MBU)

MBU: MCU in which two or more bits are involved in the <u>same logic word</u>

Scrambling in SRAMs avoids that MCUs become MBUs

Effective test plan

4 test campaigns (~1 week each) carried out

at RADEF, UCL, ESTEC and PSI

From Dec-2006 to June 2007

Extensive Design-of-Experiment:

Pattern

CKB, SOLID 0 and 1

Power supply

🖅 VDD, -20%, + 20%

Temperature

27 and 125degC

Static and Dynamic algorithms

Dynamic for MCU counting

Current monitoring on every power domains for TID tests

2 samples tested per circuit

1 spare in case of discrepancy

8×2 ion-LET and 4 proton energies

A total of 593 different test runs !

Device	Pattern	Power supply	Temp.	Algorithm	# of runs
Dec-2006 : UC	CL Effective Des	sign of Exper	iment		
SERVAL-AC2	AllO + All1 + CKB	Nom. + Vmax	RT	Dynamic	60 runs
PROMO	AllO + All1 + CKB	Nom. + Vmax	RT	Dynamic	48 runs
SOI 16Mb	СКВ	Nom.	RT	Nom.	18 runs
SERVALST	AllO + All1 + CKB	Nom. + Vmax	RT	Dynamic	58 runs
RPD11-14	AllO + All1 + CKB	Nom. + Vmax	RT	Dynamic	58 runs
Feb-2007 : RA	DEF Effective I	Design of Ex	periment		
SERVAL-AC2	СКВ	Nom. + Vmin	RT+ 125°C	Dynamic	80 runs
PROMO					Not tested
SOI 16Mb	СКВ	Nom.	RT	Static	22 runs
SERVALST	СКВ	Nom.	RT + 125°C	Dynamic	52 runs
RPD11-14	СКВ	Nom.	RT + 125°C	Dynamic	58 runs
April 2007 : E	STEC Effective	Design of Ex	periment		
SERVAL-AC2	CKB (+ AIO/AIII)	Nom.	RT	Static	2 runs
PROMO	CKB (+ AllO/All1)			Static	2 runs
SOI 16Mb	СКВ	Nom.	RT	Static	1 run
SERVALST	CKB (+ AllO/All1)	Nom.	RT	Static	2 runs
RPD11-14	CKB (+ AllO/All1)	Nom.	RT	Static	2 runs
June 2007 : P	IF Effective Des	ign of Exper	iment		
SERVAL-AC2	СКВ	Nom.	RT	Dynamic	42 runs
PROMO					Not tested
SOI 16Mb	СКВ	Nom.	RT	Static	28 runs
SERVALST					Not tested
RPD11-14	CKB + ALLO/125°C + ALL1/125°C	Nom. + Vmax /125°C	RT + 125°C	Dynamic	60 runs

Test results for investigations on latchup and hard fail

- Rare latchup events were measured at high LET on Ultra High Density (UHD) SRAMs not covered by Deep N-Well
 - High Density inverters are intrinsically more prone to latchup
- In the second second
 - verified with heavy ions and protons,
 - In to 120 MeV/mg.cm2 and VDD + 40% and 125 degC

No hard fail nor permanent damage were ever recorded during all tests

- 🖅 on circuits in ST CMOS 130nm, 90nm, 65nm
 - immunity also verified in 45nm (with 1-800MeV neutrons)
- with heavy ions and protons
- LET up to 120 MeV/mg.cm2
- proton energy up to 60 MeV
- VDD up to nominal + 40%
- temperature up to 125degC

R&D digressions : the specific SEE response of SOI 65nm -continued

Heavy ions test results for commercial 65nm BULK SRAMs

Heavy ions test results for commercial 65nm BULK SRAMs -continued

Higher cross-sections with Deep NWell due to a stronger MCU component

MCUs rapidly overcome SEUs (effect maximized with UHD SRAMs)

Implemented parasitic bipolar amplification) in ST papers at NSREC & RADECS 2007

Year with Deep-NWell even for the worst case of UHD SRAMs

With ad-hoc internal multiplexation (scrambling) in ST memory arrays

EDAC/ECC can be 100% efficient while ensuring a full latchup immunity

Proton test results for commercial 65nm BULK SRAMs

cell area (0.52/0.62/0.98µ2) does not significantly impact cross-sections

Typical Protons SEE rate for a non-hardened 65nm SRAM : 2.56e-8 SEUs/bit/day

Typical Heavy ions SEE rate for a commercial 65nm SRAM : 1.66e-7 SEUs/bit/day
CREME96 with a 2-parameter Bendel and Weibull functions for fitting protons and HI data
GEO synchronous orbit, minimum solar activity, 100mils Aluminium shielding, no ageing

Heavy ions & proton test results for commercial 65nm Flip-flops

Proton cross-section per bit

SEU cross-sections of flip-flops (FF) from production libraries strongly vary

Prover 1-2 decades

with the test patterns

VDD and clock

FF drive, pitch and design type

	Flip-flops selected for radiation radiations	FIFO size	DNW
FFA	Plain-FF, lowest drive	199 K	yes
FFB	Plain-FF, highest drive	160 K	yes
FFC	Plain-FF, highest drive, HD	194 K	yes
FFD	Clear-FF, lowest drive	133 K	yes
FFE	Plain-FF, lowest drive, HD	194 K	no

SEU cross-sections of FF and SRAM are now similar on a per device basis

Impacts of temperature and power supply on SEU cross-sections

The higher the temperature the higher the cross-sections or SEU sensitivity:

	Highest temperature used for the heavy ion testings	Cross-section increase at "saturation" (LET ~60) between RT and highest temperature
Chip A: SRAM #1 and #2	+85 °C	+37% and +42%
Chip B: SRAM #1 and #2	+125 °C	+30% and +42%
Chip C: SRAM #1 to #6	+125 °C	+52% on average

- The higher the LET, the stronger impact of the temperature
- The higher the power supply, the slightly lower the asymptotic cross-section
 - E.g. +13% on the SEU cross-sections when the power supply was reduced by 20%
- The LET threshold remains unchanged whatever the power supply
 - at least the variation cannot be experimentally quantified

Improvement of SEU cross-sections with the ST neutron-immune UHD rSRAM

per bit

Cross-section

- One decade improvement for the heavy ion cross-sections when using the ST neutron immune UHD SRAM
 - Embedded SRAM, not standalone
 - Originally designed for consumer products not space

Cross-section per bit [cm2]

- Hardening level can be fine tuned with the added eDRAM capacitor value
 - the higher the added eDRAM capacitor the better the hardening
 - illustrations in 130nm
 - various design trade-offs

Heavy ions test results for commercial ST SRAMs in CMOS 250/180/130/90/65 nm

SEU cross-sections intrinsic reduction by 30× from commercial CMOS 250nm down to 65nm

ET threshold unchanged

Cross Section (cm²/bit)

Moving from technology 250nm to 65nm naturally improves by 50× the SEU rate/bit/day

Example 2 Stress Str

TID test results in 65nm with the ESA-ESTEC Cobalt 60 source

Same TID response measured for four 65nm circuits irradiated up to 100 krad at ESA-ESTEC, Holland

a all devices power supplied at nom. VDD

all devices with input signals tied to specified values (not floating)

topological checkerboard

dose rate ~1.875 krad_{si}/h

annealing period of 24hours

current monitored on all power lines of each board. Sampling every second

210,000 read points

No over consumption at 100 krad_{si}

Zero current increase on all power domains

100% functionality at 100 kradSi

first order functional parameters unchanged

second order functional parameters (Iddq, time, setup/hold timings, ...) not accessible for tested circuits

Time [hour]

Conclusion

5 circuits in 65nm tested with radiations by ESA and ST-Crolles from end 2006 to mid 2007

- with heavy ions, protons and gamma rays
- using ESA certified beam facilities and test methods

A total of 340,000 test data collected

~600 test runs to quantify impacts on SEE of VDD, temp, pattern, clock, facility, algorithm, ...

High intrinsic radiation hardness measured with heavy ions and protons

- no latchup nor hard fail
 - up to 120 MeV/mg.cm-²
- Iow SEU cross sections with heavy ions / protons
 - can be further improved using ST rad-hard solutions such as rSRAMTM
- **EDAC/ECC** are 100% efficient with appropriate scrambling

Extremely high intrinsic radiation robustness measured with gamma rays

- mo over-consumption and full chip functionality at 100 krad for every DUTs
- no longer need for costly TID mitigation techniques (such as guard rings, edgeless transistors, local P+ doping implants ...)

Additional experiments are forecasted over 2009

- still in ST 65nm, but extended to 230 MeV protons and 300 krad cumulated over 2 months
- Inew ST rad-hard devices : rad-hard Flip-flop libraries in 65nm and medical rSRAM™ in 130nm
- mew ST advanced technologies : 65nm for Non Volatile Memory / 45nm qualified process (32nm)

BACK-UP

Jan. 2009 STMicroelectronics – Crolles Central CAD & Design Solutions

65nm Global Core Devices Table

							7		
		GP for LP/GP Mix			Low Power			IO HS	ΙΟ
	W=1µm	High VT	Std VT	Low VT	High VT	Std VT	Low VT	Analog	Analog
								W=10µm	W=10µm
	Vdd (Volt)		1.0			1.2		1.8	2.5
	Tox (nm)		1.2			1.8		3.1	5.0
	Ldrawn (nm)		60			60		200	280
	Lsilicon (nm)	4	5 (N) / 48 (I	P)	Ļ	57(N) / 60(P	')	145	280
	CET_inv (A)		20.5		26			34	55
(0	lon (μA/μm)	669	830	931	425	610	740	680	580
ő	loff (nA/µm)	5.1	51	239	0.0066	0.36	5.2	0.02	0.007
Ž	Vt lin (V)	0.283	0.201	0.152	0.53	0.41	0.34	0.44	0.45
—	Vt Sat (V)	0.189	0.096	0.037	0.43	0.28	0.19	0.33	0.4
	Jg_on (A/cm²)		<5			<0.016		~0	~0
	CET_inv (A)		22.5		27.5			37	56
(0	Ion (μΑ/μm)	300	395	458	210	310	386	310	340
ŏ	loff (nA/µm)	2.1	36	231	0.0045	0.092	2.4	0.03	0.01
PZ	Vt lin (V)	0.326	0.241	0.184	0.57	0.47	0.39	0.48	0.39
	Vt Sat (V)	0.226	0.124	0.047	0.47	0.34	0.24	0.42	0.35
	Jg_on (A/cm²)	<5			<0.0018			~0	~0
RO	FO1 (ps)	17	10.5	8.5	27	17	13	~15	~35
VT : Threshold Voltage HS : High Speed Networking Multimedia Printer Networking Multimedia Printer						IOs nalog			
Low Power process option characterized during this project									
Ja	an. 2009 STMicroel	ectronics – C	Crolles	Central CAD	& Design So	lutions			23

(No) impact of test facility on the measured SEU cross-sections

- Excellent agreement between RADEF and UCL for every test conditions
 - whatever the LET
 - within ± 20% at a given LET

(Minor) overall impact of test parameters on SEU cross-sections

Same order of magnitude whatever the test parameters and LET

