

# **TDM** <u>**Technology Demonstration Module**</u> **for PROBA-II**

# A Low Cost and Autonomous Component Space Radiation Effect monitor for space missions

Authors:

Nico Fleurinck – Verhaert Space – nico.fleurinck@verhaertspace.com Koen Puimege – Verhaert Space – koen.puimege@verhaertspace.com Hogenakkerhoekstraat 9, 9150 Kruibeke, Belgium www.verhaertspace.com

Reno Harboe-Sorensen – ESA – reno.harboe.sorensen@esa.int Keplerlaan 1, 2200 Noordwijk, The Netherlands www.esa.int

27 January 2009

# Contents



Introduction

- Interface Design
- Architectural Design
- Chip Design
- Validation Approach
- Critical area's
- The results
- The team

### Introduction





In a contract for the European Space Agency, Verhaert Space developed a <u>Technology Demonstration Module</u> (TDM) for flying onboard PROBA-II.

It is primarily a space radiation effects monitor, measuring Single Event Effects (SEU and SEL) and Total Ionising Dose. Secondarily it provides an in-space technology demonstration test platform for components.

# **Introduction (2)**



### The need?

A low-cost component Test-platform

 $\rightarrow$  to demonstrate in-orbit performance of new technologies

A low-cost radiation SEE monitor

→ to measure in-orbit radiation effects inside existing flight equipments and correlate these measurements with the predictions and measurements performed on ground.

# The design goal

- easy integration in satellites and flight equipment
- available as OEM-board or as a self-standing payload
- autonomous payload (minimum management from the spacecraft)
- electrical interfaces compatible with a wide range of satellite-busses.
- low power, mass and volume
- modularity
  - at board-level (easy replacement of component technology)
  - at FPGA-level (easy integration of third-party IP-cores)
- reliability
  - high-reliable part:
    - for the radiation monitor, experiment control and satellite interface logic
  - experimental part:
    - for the new technologies (lower screened components)

# **Interface Design**

VERHAERT SPACE



#### 27 January 2009

#### D/TEC-QCA Final Presentation Day 2009

Slide 5

# **Architectural design**



- EMI filter
- Galvanic isolated power supplies (28V  $\rightarrow$  5V,±12V)
- UART I/F (RS422 electrical levels)
- FPGA RTAX2000 "The brain"
- Radiation monitors for SEU, SEL and TiD
  - SEU "Multi chip SRAM dev. from Atmel"
    - AT68166F (4 x 512Kx8 SRAM)
  - SEL "SRAM dev. from Alliance Semi, ISSI and Samsung"
    - AS7C34096A-12TI (512Kx8 SRAM)
    - IS61LV5128AL-12TI (512Kx8 SRAM)
    - IS62WV20488BLI (2Mx8 SRAM)
    - K6R4008V1D-TI10 (512Kx8 SRAM)
  - TiD "RADFETs from Tyndall"
    - ESAPMOS4
- Technology Demonstration:
  - 8Gbit NAND-FLASH memories
    - K9F8G08U0M-PIB0 (1Gx8 NAND FLASH)



VERHAERT SPACE

# **Chip Design**



#### 27 January 2009

**D/TEC-QCA Final Presentation Day 2009** 

**VERHAERT** SPACE

# Validation Approach

VERHAERT SPACE



# Validation Approach (2)

27 January 2009





# **Critical area's**



Herewith a shortlist of the most important difficulties encountered during the TDM development

- Extra ripple on the supply voltage due to an ACTEL Prototype adaptor
- Finding a low voltage DC/DC converter with good efficiency
- Estimating the power-consumption of ACTEL RTAX2000 SoC designs
- Qualifying the reflow-process for a 624-pin CCGA for use in space
- Screening and soldering of RoHS compliant parts
- Short development time (1 year from idea-2-FM)



# **The Result**

27 January 2009



The TDM as developed for the Proba-II satellite offers the following functionality for the following budgets:

| SEU monitor<br>- based on characterised Multi-chip SRAM c<br>- configurable test patterns<br>- configurable address range<br>- continuous logging of results                                         | levice                                                            | Component experiment<br>- Samsung NAND-Flash devices<br>- SEU/SEL mitigation<br>- continuous device exercising<br>- continuous logging of results                                                                    |              |                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>SEL monitor</b><br>- based on 4 diff characterised SRAM chips<br>- <i>4 LET levels: 3, 6, 8 and 10MeV</i><br>- automatic re-enabling after LU detection<br>- protection for fast consecutive LU's | Budgets<br>Mass 400g<br>Volume 160x100x23<br>Power 4 W (operation |                                                                                                                                                                                                                      | 5mm<br>ting) | <ul> <li>Power Interface</li> <li>Wide input range</li> <li>EMI filtering</li> <li>Galvanic isolation</li> </ul> Communication Interface <ul> <li>serial UART</li> </ul> |
| TID monitor<br>- based on 2 RADFETs                                                                                                                                                                  | Temp is                                                           |                                                                                                                                                                                                                      |              | <ul> <li>RS422 electrical levels</li> <li>Configurable baudrate</li> </ul>                                                                                               |
| <i>measurement range: 0-3kRAD</i><br>continuous temperature monitoring<br>temperature compensated current supply<br>continuous logging of results<br>configurable sample rate                        |                                                                   | Centralised Logging and Timestamping facility <ul> <li>Time synchronisation with spacecraft</li> <li>automatic time-stamping of all events</li> <li>configurable level of events</li> <li>storage of data</li> </ul> |              |                                                                                                                                                                          |

### The team



#### The TDM development has been carried out by

Verhaert Space a leading Belgian small space systems company.

With a track record of more than 30 years Verhaert Space develops advanced small space systems for agencies, large systems integrators and governments. Ranging from advanced small satellites, advanced space mechanisms & structures, and instruments & facilities for micro gravity research in manned and unmanned missions.

#### But could also be realised thanks to a good support from ESA

Mr. Reno Harboe-Sorenson (ESA, NL)

#### And by a teaming with some renomated experts in their specific field

Mr. Aleksandar Jaksic (Tyndall, IE) Mr. Hagen Schmidt (IDA, DE)



27 January 2009







27 January 2009





# **Commercial Flyer**



#### TDM



A low cost and autonomous component space radiation effect monitor for space missions

- Verhaert Space, Component Space Radiation Effect Monitor, an off-the-shelf autonomous unit to measure and characterize radiation effects in a space environment.
- Developed in close cooperation with ESA.
  - TID Monitor
  - SEU Monitor
  - SEL Monitor
  - Technology demonstrator (NAND FLASH)

Main technical data Dimensions: Length = 170mm Width = 30mm Height = 110mm Mass properties 500gram Power interface: Supply Voltage between 20 and 30 Vdc Consumption less than 4 Watt Galvanic isolation available on supply voltage D-Sub standard density 9pins male connector Data interface: Serial UART communication I/F with RS422 electrical levels Baud-rate configurable D-Sub standard density 9pins female connector Environmental Conditions: Operating Temperature between -20℃ and +60℃ Designed for a LEO environment Quality standard Radiation tolerant control circuitry (based on Actel RTAX, ...) Component selection performed according to ECSS-Q-60 class 3 For more information contact:



Verhaeit Space Mr. Frank Preudhomme Hogenakkerhoekstraal 9 9150 kruibeske Belgum +32 (0) 320 14 34 frank preudhomme giverhaeitspace.com rido //www.verhaeitspace.com

ESA-ESTEC Mr. Reno Harboe-Sorensen Keplerlaan 1 – PO Box 299 2200 AG Noordwijk 2H The Netherlands +31 (0)71 565 38 63 reno harboe sorensen@esa.In



VERHAERT SPAC

#### 27 January 2009

#### **D/TEC-QCA Final Presentation Day 2009**

Slide 15



# Thank you for your attention

27 January 2009 D/TEC-QCA Final Presentation Day 2009

Slide 16