

Radiation Characterisation of ST MOSFETs – Overview and Results

Fredrik Sturesson ESA/ESTEC Francoise Bezerra, CNES 28th of January 2009

INTRODUCTION

- What is Single Event Gate Rupture in Power MOSFETs
- What can be hidden behind SEGR test data?
 - Latent oxide damage effects
 - Fluence effects

Safe Operation Area (SOA) Testing

- Test Object
 - Prototype from STM
 - SEB hardened
 - 100V N-channel
- Irradiation
 - RADEF, Jyväskylä, Finland
 - Xenon
 - 1217 MeV
 - Range(Si) = 89um
 - LET(Si) = 60.0 MeV-cm2/mg
- Post Irradiation Gate Stress test

Radiation Characterisations of ST MOSFETs - Overview and Results

Latent Oxide Damage

SEGR effects can be divided into two categories

- Full gate rupture
 - Achieved at high negative Gate voltages
- Latent oxide damage
 - Achieved at low gate voltages

Latent Oxide Damage

- Example Full gate rupture
 - Vds = 20 V
 - Vgs = 20 V

During Irradiation

After Irradiation

Ohmic drain & gate

Latent Oxide Damage

- Example Latent Oxide Damage
 - Vds = 50 V
 - Vgs = 0 V
 - **During Irradiation**
 - > No evidence of rupture

After Irradiation

Rupture when applying -20V to gate

QCA/CNES Presentation Days 2009, PSI, Switzerland 28/1/2009 Page 6

Post Irradiation Gate Stress Test

- Reveal Latent Oxide damage
 - By applying a high voltage to the gate oxide after irradiation
 - Voltage level
 - Time of stress
- Used Method
 - Ramping up and down Vgs to maximum rated gate voltage :
 - At each voltage step measure
 - Igs
 - Ids
 - 200 ms at each voltage step

1.0E-10

Post Irradiation Gate Stress Test

1.0E-10

28/1/2009 Page 8

Post Irradiation Gate Stress Test

0.0E+00 0.0E+00 of Max -2.0E-09 -5.0E-08 Constant voltage -4.0E-09 Tstep = 200ms Voltage Ramp -1.0E-07 1 hour **Y** -1.5E-07 75% **v s b** -1.0E-08 -2.0E-07 -250 nA II -14 nA -1.2E-08 2 -2.5E-07 -1.4E-08 -3.0E-07 -1.6E-08 s6/ -15 -20 -10 -5 0 1000 2000 3000 4000 0 Time [seconds] Vgs[V] -4.7 0.0E+00 100% of Max) -4.8 -2.0E-07 Constant voltage Constant Current -4.9 -4.0E-07 = 1 hour s = 1.0 uA Vgs [V] [A] s6| hour -5.0 -6.0E-07 -5.1 -8.0E-07 !! -1.0 μA !! 6 lgs -5.2 -1.0E-06 - 5.2 V SgV -1.2E-06 -5.3 1000 2000 2000 3000 4000 0 3000 0 1000 Current limit of supply Time [seconds] Time [seconds] Radiation Characterisations of ST MOSFETs - Overview and Results

Post Irradiation Gate Stress Test

Test Object

- Prototype from STM
- SEB hardened
- 100V N-channel
- Irradiation
 - RADEF, Jyväskylä, Finland
 - Xenon
 - 1217 MeV
 - Range(Si) = 89um
 - LET(Si) = 60.0 MeV-cm2/mg
- Post Irradiation Gate Stress test
 - Voltage ramp to -20Vgs
 - Vds = 0 V
 - T = 200 ms per voltage step
- Pass criteria for SOA
 - No SEGR during irradiation
 - Igs below 100nA in Post Irradiation Gate Stress test

CONCLUSION

- Post irradiation gate stress test must be performed in SEGR testing
- Degradation from SEGR can wrongly be interpreted to total ionising dose degradation
- Voltage and time are critical parameters

Fluence Effects

Test Object

- Prototype from STM
- SEB hardened
- 100V N-channel
- Irradiation
 - RADEF, Jyväskylä, Finland
 - Xenon
 - 1217 MeV
 - Range(Si) = 89um
 - LET(Si) = 60.0 MeV-cm2/mg
- Post Irradiation Gate Stress test
 - Voltage ramp to -20Vgs
 - Vds = 0 V
 - T = 200 ms per voltage step
- Pass criteria for SOA
 - No SEGR during irradiation
 - Igs below 100nA in Post Irradiation Gate Stress test

- SEGR Safe Operation Area as function of
 - Vds and Vgs
 - Two Cases:

- High Fluence
 - 300,000 ions/cm2
 - 1000 ions/cm2-s
 - 3 devices per bias condition
- Low Fluence
 - 1,000 ions/cm2
 - 10 ions/cm2-s
 - 4 devices per bias condition

Fluence Effects

- SOA with 1,000 ions/cm2 exclude all possible fluence effects
- Total fluence with 4 devices is 4,000 ions/cm2
 - Well above measured cross section for SEGR

sa

Fluence Effects

.

Discussion Fluence effects

Possible explanations:

- Wide threshold of SEGR vs Vds
 - Only at low gate voltages
 - Abrupt threshold at higher negative gate voltage

- Or artifact from Cumulative effects
 - The probabiliy for ion impacts from more than one ion in an elementary cell increases with increased fluence

Fluence Effects

CONCLUSION

- Fluence effect observed in SOA
 - Multi impact effects can not be excluded
 - Miss experimental evidence & physical mechanism behind
- Fluence effects and Post Irradiation Gate stress will be further studied at ESA and CNES

Results Safe Operation Area Krypton

Radiation Characterisations of ST MOSFETs - Overview and Results QCA/CNES Presentation Days 2009, PSI, Switzerland 28/1/2009 Page 17