

**CENTRE NATIONAL D'ÉTUDES SPATIALES** 

## Lessons learned on IASI / METOP SEU sensitivity of rad-hard SRAMs

R. Ecoffet, CNES, France T. Nuns, S. Duzellier, ONERA-DESP, France



## **IASI Memories**

- ~ 130 rad-hard 1-Mbit Honeywell HX6228 SRAMs
- Procured in 1998 and « guaranteed » at < 1 e-10 upset/bit/day in GEO (→ heavy ions only)</p>
- Not supposed to be proton sensitive at this time
- METOP launched 19 Oct. 2006
- IASI in full operational configuration since May 2007
- In flight we do observe upsets in SAA and polar zones
- May 2007 January 2009
  - 5 upsets in SAA
  - 2 upsets in South Pole region
- Upsets lead to operational problems (whose impact is now limited due to great work at EUMETSAT)



#### **SEU** anomalies





# **SEU sensitivity data**

- A 2002, Honeywell application note stated a proton sensitivity on HX6228 and gave proton sensitivity Weibull parameters
- CNES obtained a proton test report from Honeywell (dated 2001)
- Heavy ion data were obtained from ESA / ESTEC
- Components from flight lots were tested by CNES :
  - Heavy ions : November 2008 at GANIL, F
  - Protons : January 2009 at KVI, NL
- Honeywell ESA CNES data are consistent even if obtained in different lots
- During our exchanges with Honeywell they stated that <u>The problem is still there today</u>



## **Proton sensitivity**



- Note :
- Very low threshold of Weibull fit
- Neutron level when using degraded beams crashed FPGA test controller → lesson learned for proton testing at high flux / fluence levels
- Only 190 MeV tests were possible (primary beam without degradors)



# **CODES** Flight rate estimation for IASI orbit Trapped protons

- AP8, solar minimum, OMERE implementation
- Reference period 01 May 2007 to 01 January 2009 (611 days)
- The actual rate on the reference period (5 SEUs in SAA) is pretty well consistent with predictions given hypothesis in shielding and statistic fog.

|          | Rate (SEU / day) |              | Rate (SEU /year) |              | Rate (SEU / reference period) |              |
|----------|------------------|--------------|------------------|--------------|-------------------------------|--------------|
|          | 1 memory         | 130 memories | 1 memory         | 130 memories | 1 memory                      | 130 memories |
| 3 mmAl   | 6.41E-05         | 8.33E-03     | 2.34E-02         | 3.04         | 3.92E-02                      | 5.09         |
| 10 mmAl  | 5.50E-05         | 7.15E-03     | 2.01E-02         | 2.61         | 3.36E-02                      | 4.37         |
| 30 mmAl  | 3.96E-05         | 5.15E-03     | 1.45E-02         | 1.88         | 2.42E-02                      | 3.15         |
| 100 mmAl | 1.69E-05         | 2.20E-03     | 6.17E-03         | 0.80         | 1.03E-02                      | 1.34         |
| 200 mmAl | 7.83E-06         | 1.02E-03     | 2.86E-03         | 0.37         | 4.78E-03                      | 0.62         |
| 300 mmAl | 4.60E-06         | 5.98E-04     | 1.68E-03         | 0.22         | 2.81E-03                      | 0.37         |

# CORS Flight rate estimation for IASI orbit Flare protons

- Case solar events, OMERE implementation
- Depending on case (event spectrum, shielding hypothesis) risk ranges from quasi null to quasi certain
- In Events of the coming new solar maximum will not change a lot the statistics

|         | 1 memory (SEU / day) |            |           | 130 memories (SEU / day) |           |            |           |            |
|---------|----------------------|------------|-----------|--------------------------|-----------|------------|-----------|------------|
|         | August 72            | October 89 | July 2000 | October 03               | August 72 | October 89 | July 2000 | October 03 |
| 3 mmAl  | 7.00E-03             | 4.57E-03   | 2.18E-03  | 1.45E-03                 | 0.91      | 0.59       | 0.28      | 0.19       |
| 10 mmAl | 4.54E-03             | 2.82E-03   | 7.52E-04  | 6.08E-04                 | 0.59      | 0.37       | 9.78E-02  | 7.90E-02   |
| 30 mmAl | 1.93E-04             | 1.19E-04   | 7.94E-05  | 1.36E-04                 | 2.51E-02  | 1.55E-02   | 1.03E-02  | 1.77E-02   |



# Heavy ion sensitivity

#### GANIL measurements

- Note the smooth appearance of the crosssection curve (no evident threshold, knee nor saturation)
- Note also SEU observation at 40 MeV/mg/cm<sup>2</sup>
- In its proton report Honeywell referred to SEUs "in the 15-40 MeV/mg/cm<sup>2</sup> range"
- Consistent with ESA / Hirex data on other date code



# Heavy ion sensitivity

#### Reference curve and Weibull fit used for rate calculations

cnes

| LETth                | 20 MeV/mg/cm <sup>2</sup>    |
|----------------------|------------------------------|
| Saturation X-section | 2.6e-6 cm²/device            |
| W                    | 43.97 MeV/mg/cm <sup>2</sup> |
| s                    | 4.22                         |



| LET (MeV/mg/cm <sup>2</sup> ) | X-section (cm <sup>2</sup> /device) |  |  |
|-------------------------------|-------------------------------------|--|--|
| 40                            | 2.00E-07                            |  |  |
| 45                            | 3.37E-07                            |  |  |
| 50                            | 5.00E-07                            |  |  |
| 67                            | 6.73E-07                            |  |  |
| 83                            | 2.61E-06                            |  |  |

# COLES Flight rate estimation for IASI orbit Galactic cosmic ions

- CREME86, 1 mmAI, OMERE implementation
- Reference period 01 May 2007 to 01 January 2009 (611 days)
- The actual rate on the reference period (2 SEUs in South Pole Area) is <u>not</u> consistent with predictions even with conservative hypothesis in shielding and whatever statistic fog.
- Proton upsets are calculated to dominate the rate even outside SAA but estimated contribution factor of 10 under actual rate
- Infinitesimal calculated heavy ion rate, something's wrong here !

|                                           | 1 memory (SEU / day) | 130 memories (SEU / year) | 130 memories (SEU / reference period) |
|-------------------------------------------|----------------------|---------------------------|---------------------------------------|
| Honeywell GEO                             | 1.00E-04             | 4.75E+00                  | 7.94                                  |
| LEO GCR M=1 solmin c=2 µm 1000000 volumes | 1.44E-16             | 6.84E-12                  | 1.14E-11                              |
| LEO GCR M=1 solmin c=2 µm 1 volume        | 2.58E-08             | 1.23E-03                  | 2.05E-03                              |
| LEO GCR M=1solmin c=1 µm 1 volume         | 4.30E-08             | 2.04E-03                  | 3.42E-03                              |
| LEO GCR M=3 c=1 µm 1 volume               | 4.34E-08             | 2.06E-03                  | 3.45E-03                              |
| LEO GCR M=4 c=1 µm 1 volume               | 6.37E-08             | 3.02E-03                  | 5.06E-03                              |
| Galactic protons M=1                      | 1.84E-06             | 8.74E-02                  | 0.15                                  |

Note : with 1 million volumes, individual volume has a surface area of 0.02 x 0.02  $\mu m$  with one volume only it is 16 x 16  $\mu m)$ 

R. Ecoffet, T. Nuns, S. Duzellier, QCA/CNES day, Villigen, Switzerland, 28 January 2009



## Conclusions

- There is a good chance that we face a problem of high-Z recoils
- CNES will now recommend in its RHA specifications
  - To get proton sensitivity data for rad-hard components
  - To make proton tests when those data are not available
  - To use the "1 e-10 upset/bit/day" as baseline for ion rate calculation (rates calculated with X-section curve and CREME are misleading)
  - To take into account GCR proton rate
  - To use safety margins when global estimated rate falls in the "few event" range for mission lifetime
- SAA rate is quite well reproduced using test data
- We did not succeed in properly estimating the flight rate outside SAA, estimation is lower than reality by a factor 10
- Protons (cosmic rays) seem to dominate rate also outside SAA
- Something's wrong with ion predictions. Other phenomena involved ? (ion – ion interactions ? validity of sensitive volume theory for such devices ?)...