

Équipe RADIAC « RADIAtion et Composants » Institut d'Électronique du Sud (IES)

Introduction

- ICs in Bipolar technology Exhibit degradation with TID
- Both electrical and functional parameters are impacted: lin **7** Icc ****
- In Physics oriented studies, the input bias current is often used to evaluate the degradation
- Problem: The degradation curves exhibit a variety of shapes
- What are the root causes?
- What are the consequences for RHA?

Starting point 4 ICs irradiated @ 11 rad/s→4 different responses

Compensation mechanisms

- In a bipolar Junction Transistor:
 - □ TID → Ib 7 & β ¥
- In a circuit, I_c is forced with a current source I_{sc}
- Connections at the collector node may derive or add current

Example of Circuit Effect and Compensation Mechanism in the LM111*

Impact of bias conditions Devices irradiated all pins grounded

- Vbe = 0V is a worst case for the degradation of ALL transistors
- The degradation of the current sources is maximum
- the compensation effect is maximum
- lin+ exhibits a non monotonic shape

Impact of bias conditions Devices irradiated "**ON**"

- •The degradation of the input transistor is the same
- Current sources irradiated biased exhibit less degradation
- Compensation mechanism is reduced
- •The degradation of lin+ is Monotonic

OP400 Input current canceling structures

Annealing Effect

- Step-stress irradiation was followed by room temperature annealing
- Anealing before saturation
 lin
- Annealing after saturation
 In 7

Annealing Effect

- Due to compensation mechanism
 - there is a direct relationship between Isc and Iin
- It is possible to calculate the impact of a recovery of lsc on lin
- Depending on TID, this impact can be
 - either positive (degradation)
 - negative (recovery)

- **A** : annealing is performed after the saturation region
- **B** : annealing is performed before the saturation region

Annealing is not significant

14

→ The result of LDR HDR sequence of irradiation is almost impossible to analyze

ELDRS and Dose rate switching

HDR + n LDR irradiation

Reconstruction of the curve by translation

Accurate, time saving by a factor t/n

requires a large sample size (n)

J. Boch et al. "Estimation of Low Dose Rate Degradation on Bipolar Linear Integrated Circuits Using Switch-ing Experiments", IEEE Trans. Nucl. Sci., vol. 52, pp. 2616-2621, 2005

16

ESA QCA – January 28th, 2009

Conclusion 1/2

- The variety of shapes observed is due to circuit effects in ICs
- Compensation or cumulative degradation depends on:
 - □ The architecture of the input stage
 - Bias
 - Dose rate
 - □Annealing

Conclusion 2/2

- What are the risks ?
 - Missing the peak at low dose rate
 - Peak value has been reported before 5krad (LDR) in some devices
 - critical in the case of large irradiation steps

Step > 15 krad

Thanks for your attention

ESA QCA – January 28th, 2009