

Single Event Transient Test laboratory

QCA/DAYS RADECS WORKSHOP

31 January 2009

Outline

- Customer requirements
- Test setup
- Achievement of radiation test
- Test analysis and application software
- Test Report
- Examples
- Conclusion

SET definition

- The Single Event Transient (SET), or Analog Single Event Upset (ASEU), or soft error for analog
- The SET consists of a transient voltage pulse generated at that node that propagates to the device output and his propagation on the electrical circuit.
- SETs in linear devices differ significantly from other types of SEE, because SET depend on multiples parameters
 - Bias conditions and application
 - Ion energy and range impact localization
- and could have different and complexes shapes (short or long duration, high or low amplitude, bipolar behavior...)
- Is not possible to define worst case bias conditions, So, It is necessary to test the parts in their application conditions. and we must testing all the applications ! Of course it's beam time consuming and difficult to apply
- So laser testing and simulation may be useful to check other bias conditions.

Customers requirements

- Description of the board functionality
 - Power supplies,
 - Input signals (amplitude, frequency, waveform, pattern...)
 - Clocks,
 - Output signals, (amplitude, frequency, waveform, pattern...)
 - Representative loads outputs
- Selecting measurement points
 - Outputs of DUT, Outputs of board,
 - Trig on output devices and catch all channels

Test setup

• Test Lot

- 5 samples before delidded
- after this operation check functionality,
- minimum 3 samples ok for the test

• Irradiation facility

- Check information on the technology to select irradiation facility :
 - Ions specifications, LET value and dose deposited on active volume
 - Energy, penetration range of ions : $30 \,\mu\text{m} 100 \,\mu\text{m}$?
 - Don't use of tilted beam

Test setup

- To catch the events, digital oscilloscope is the main powerfull tool but be carefully to :
 - Bandwith from analog input amplifier and acquisition rate used
 - Probes (passive and active), check your signal integrity
 - Triggers capabilities, don't forget events too short but also too long
 - Memory for store all events with enough informations (all the transients collected must be recorded for further analysis).
 - Dead time between two triggers events (very important if not you could lose events or)
 - Number of inputs to store several signal and optimize beam time
 - But also
 - The cables and PCB using in real conditions (with vacuum chamber, connections template, electrical environment during the irradiation
 - ofen the test bench working on clean environment and didn't work properly on irradiation site ! ...

Achievement of radiation test

- Flux must be adjusted to have maximum 1 events /second (but depend of your test bench)
- A sufficient number of SET needs to be collected to get a significant number > 200 events for each class of events
- Strategy for the test:
 - Cary out the first test with the high LET of the facility for detect all the differents class of events
 - First without ion beam ! (check you circuit detection !)
 - With different timebase
 - With different trigger level (positive, negative)
 - And adapt the flux for catch all events

Tests report

• The test report must contain :

- All informations on DUT, picture of the die,
- Electrical conditions for tests
- Ions Beam used
- Equipments used
- In First approach the total envelop of SET detected
- But also all Plots of cross section versus LET in active area for all class of events
- + CD with all waveforms recorded and software for further analysis

SET test bench: example

SET Curves

SET Curves

SET Curves

SET software

SET software

SET software

Conclusion

