

Single Event Transients in Digital Circuits

Véronique Ferlet-Cavrois, CEA, DAM, DIF, Bruyères-le-Châtel F-91297 Arpajon, France

CEA Bruyères-Le-Châtel

3rd RADECS Thematic Workshop on "Single Event Transient", January 29, 2009, PSI, Villigen, Switzerland

Acknowledgements for help in any 27 - 29 design, radiation tests and simulations

Nicolas Fel, Marc Gaillardin, Olivier Flament, Philippe Paillet, CEA-DIF, Bruyères-Le-Châtel, Arpajon, France

Vincent Pouget, Fabien Essely IMS, University of Bordeaux, France

Dale McMorrow, Joe S. Melinger Naval Research Laboratory, Washington, DC, USA

Daisuke Kobayashi, Kazuyuki Hirose ISAS/JAXA, Kanagawa, Japan

James R. Schwank, Marty R. Shaneyfelt, Paul E. Dodd Sandia National Laboratories, Albuquerque, NM, USA

CEA Bruyères-Le-Châtel

3rd RADECS Thematic Workshop on "Single Event Transient", January 29, 2009, PSI, Villigen, Switzerland

Olivier Faynot, Christine Raynaud, Carine Jahan, CEA LETI, Grenoble, France

Nicolas Renaud, Dominique de Saint-Roman ATMEL, Nantes, France

Bruno Rauber, Eugène Mackowiak, Philippe Roche, Gilles Gasiot, Philippe Flatresse, Gilles Casanova, Richard Fournel STMicroelectronics, Crolles, France

Work supported by: French Ministry of Defense US Defense Threat Reduction Agency

CEA Bruyères-Le-Châtel

3rd RADECS Thematic Workshop on "Single Event Transient", January 29, 2009, PSI, Villigen, Switzerland

Chains of inverters were fabricated in bulk and SOI with different designs

- 180nm and 130nm bulk chains
- 130nm SOI chains, four designs, with body contacts

Broad beam ionsIPN OrsayRADEF JyväskyläFocused pulsed laserIMS BordeauxNRL Washington

The unattenuated propagation of SETs is a growing concern in high-speed logic ICs with technology downscaling

[S. Buchner, TNS 1997]

SEU versus SET sensitivity

Technologies below the 90-nm node will be sensitive to SETs induced by terrestrial α -particles

P. E. Dodd, , et al. TNS 2004

The minimum widths of unattenuated SETs are narrower with technology downscaling

A large range of SET width is expected to propagate in logic circuits fabricated in highly scaled technologies

Large distributions of SET pulse widths are measured at the output of inverter chains

Typical runs count at least 200 transients to get enough statistics

The bulk chain exhibits an obvious Propagation-Induced Pulse Broadening (PIPB) effect

Pulse broadening is enhanced at low supply voltage

130nm PD SOI with body contacts also exhibits pulse broadening

The broadening per inverter and the "original" SET width are extracted from laser experiments

The SET sensitivity is largely underestimated by standard models

The broadening effect contributes to enhanced the SETs sensitivity

Heavy ion tests are consistent with laser data

Empirical rule: 1pJ = 1MeVcm²/mg Front side laser irradiation 590nm

Body charging in <u>bulk and SOI</u> OFF-state transistors is responsible for broadening

The body charging lowers the threshold voltage of the OFF-state transistors

Impact ionization Gate oxide leakage

When body charging is taken into account pulse broadening is reproduced by simulation

What are the effects of - the clock frequency?

[S. Buchner, TNS 1997]

The probability of SET capture increases linearly with the circuit <u>clock frequency</u>

Clock frequency (MHz)

[S. Buchner, TNS 1997]

What are the effects of - the clock frequency? - the data frequency?

[S. Buchner, TNS 1997]

The pulse broadening (i.e. the SET sensitivity) decreases at high <u>data frequency</u> (≥ 100MHz)

Pulse broadening is a dynamic effect related to the inverter history

Summary

• SET broadening occurs in both bulk and SOI

- SET broadening is responsible for the propagation of narrow SETs
- It contributes to increase the sensitivity to SETs
- SET broadening is induced by body charging in OFF-state transistors
 - It is a dynamic effects which depends on the transistor history
 - SET broadening occurs at low frequency (< 100MHz)
- SET broadening is enhanced
 - at low supply voltages
 - for designs using small transistors
 - in some "worst-case" branched designs

SET broadening is an issue in highly-scaled complex circuits

Implications for hardness assurance test methodologies and hardened circuit designs

- SET broadening must be accounted for in SET width measurements
 - Presently utilized SET test methodologies must be adapted to characterized the broadening effect

- <u>SET broadening must be taken into account in circuit models</u> for hardened circuit design
 - Otherwise, techniques such as fault injection are not predictive
 - Still a lot of work to be done