3rd RADECS Thematic Workshop on "Single Event Transient" January 29th 2009

SET rate prediction Critical issues – Realistic assumptions

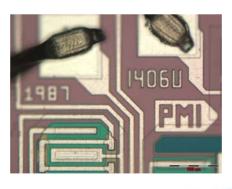
All the space you need

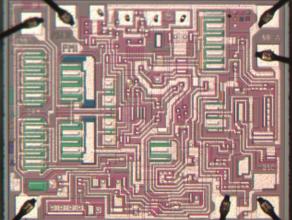
Content

- SET rate prediction : test data set reliability
- SET rate prediction : use of test data
- SET rate predictions: the dispersion
- SET rate prediction: influence of the environment
- Conclusion

Introduction

- For Single Event Transient (SET), the baseline of Radiation Hardness Assurance (RHA) approach shall be the analysis of the effect of a SET on equipment performance: it shall be demonstrated that a SET will not produce equipment out of specification.
- However, in some cases, countermeasure by design can be difficult and it can then necessary to perform SET rate predictions
- The trust we put in these predictions relies on several aspects
 - Reliability of test data set
 - Hypothesis taken during SET rate calculation process
 - Radiation environment models...

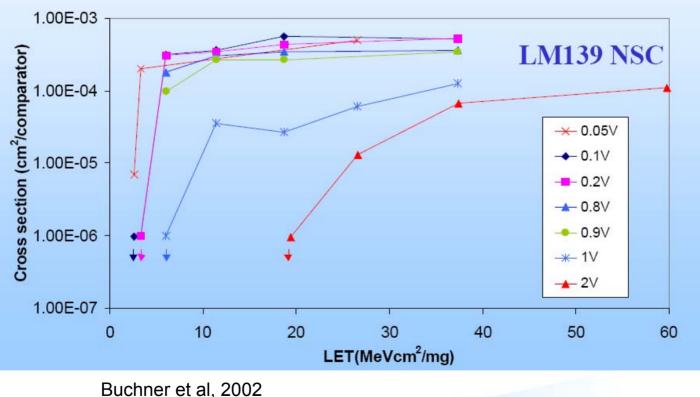

SET rate prediction : test data set reliability 1/4



- To predict SET rate implies that ground test data are available
- First step is to insure that the test data are reliable
 - To insure that tested device is « identical » to the one that is going to fly
 - To insure that tested application is "identical" to the one that is going to fly
 - To insure that measured SET corresponds to event that will trigger outage

Device traceability

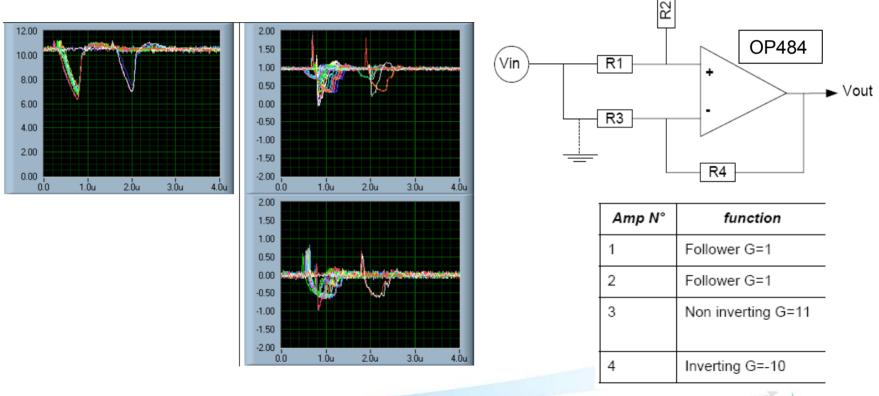
 Identical manufacturer and reference number is not enough



All the space you need p_{p_4}

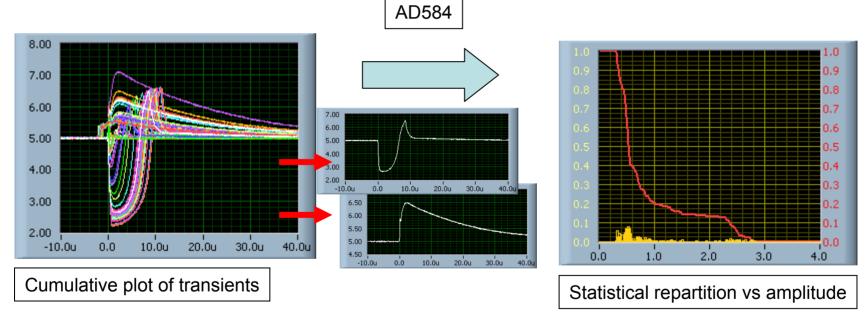
SET rate prediction : test data set reliability 2/4

 Bias conditions have a significant effect on device sensitivity to SET



SET rate prediction : test data set reliability 3/4

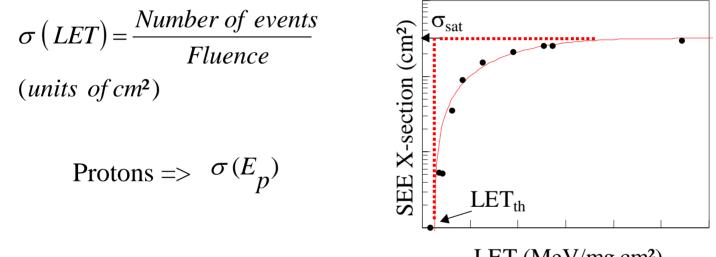
 Bias/operating conditions also have a significant influence on SET waveform and duration



All the space you need

SET rate prediction : test data set reliability 4/4

- For a given application condition, different SET waveform of various duration can occur
 - Probably not all of observed SET can trigger an outage


\Rightarrow All this parameters strongly affect calculated SET rate

SET rate prediction : use of test data 1/5

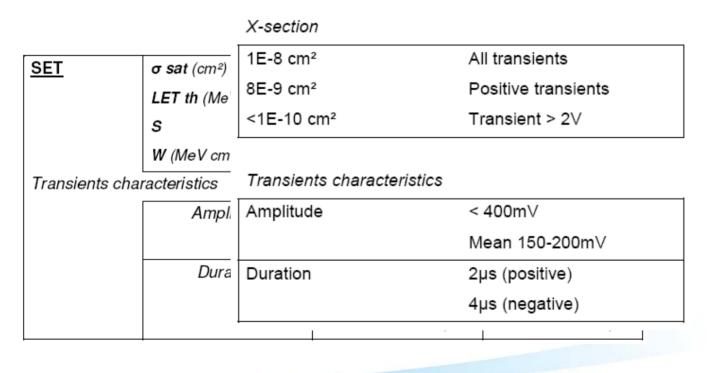
 SET testing outputs will likely be the CS curve that measures the LET-dependent sensitive area of the chip.

LET (MeV/mg.cm²)

Most of the devices exhibit a LET_{th} < 15 MeV.cm²/mg

- Are they sensitive to proton induced SET?

3rd RADECS Thematic Workshop on "Single Event Transient", January 29th 2009


All the space you need

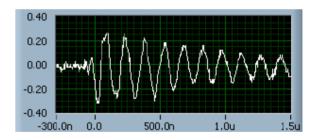
SET rate prediction : use of test data 2/5

Not systematically

- Example 1: Operational amplifier
 - Pleatoy iSE SEE Stess utsults

All the space you need p_{p_9}


SET rate prediction : use of test data 3/5

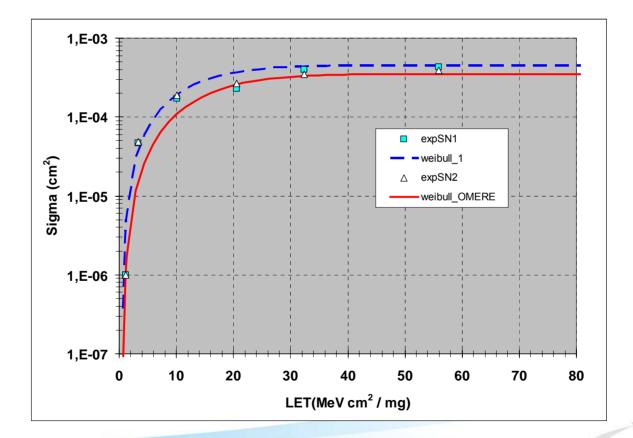


- Heavy ion

σ sat (cm ²)	9,00E-05
LET th (MeV cm²/mg)	7
S	1,4
W (MeV cm²/mg)	42
Transient Characteristics	
Amplitude	-2.2V/+1V
Duration	1µs

- proton

SET	Not SENSITIVE up to 190MeV
-----	----------------------------


All the space you need

EA

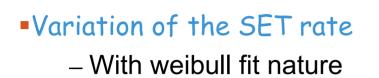
Use of cross section curve

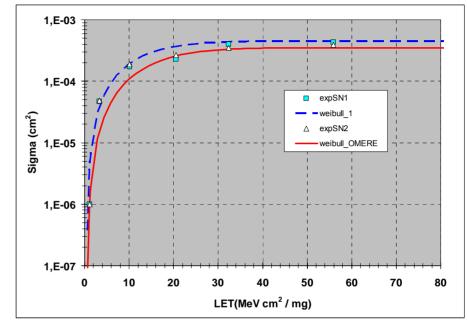
- How do we use it: Weibull fitting?

3rd RADECS Thematic Workshop on "Single Event Transient", January 29th 2009

p11

All the space you need


Other parameters to define


- Number of nodes that constitute the sensitive area
 - Difficult to estimate, is variable with device type
 - Potential solution to determine it is to perform a laser mapping of the device
 - Assuming the sensitive area is a unique node will provide conservative rates
- Thickness of the sensitive depth
 - It is expected that SET phenomenon is a "deep" one; as an example, NASA GSFC Testing Guidelines for Single Event Transient (SET) Testing of Linear Devices recommends to take an averaged value of 10 µm

All the space you need p_{12}

	SET rate (/device/day)	Calculation conditions
Weibull 1	3.3 10-3	Node x1 ; SET amplitude 1 ; depth 2µm ; GCRISO
Weibull 2	1.6 10-3	Node x1 ; SET amplitude 1 ; depth 2µm ; GCRISO

Variation of the SET rate

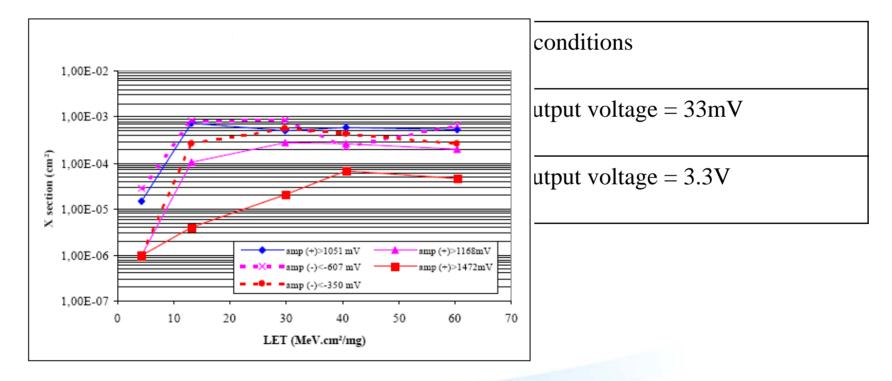
– With sensitive depth

	SET rate (/device/day)	Calculation conditions
Depth 2µm	3.1 10-3	Weibull1 ; Node x1 ; SET amplitude 1 ; GCRISO
Depth 10 µm	3 10-3	Weibull1 ; Node x1 ; SET amplitude 1 ; GCRISO
Depth 30 µm	2.6 10-3	Weibull1 ; Node x1 ; SET amplitude 1 ; GCRISO
Depth 50 µm	2.3 10-3	Weibull1 ; Node x1 ; SET amplitude 1 ; GCRISO

Variation of the SET rate

- With sensitive nodes quantity

	SET rate (/device/day)	Calculation conditions
Nodes x10	3.1 10-3	Weibull1 ; SET amplitude 1 ; depth 2µm ; GCRISO
Nodes x25	3 10-3	Weibull1 ; SET amplitude 1 ; depth 2µm ; GCRISO
Nodes x50	2.9 10-3	Weibull1 ; SET amplitude 1 ; depth 2µm ; GCRISO
Nodes x10	1.3 10-3	Weibull1 ; SET amplitude 1 ; depth 50µm ; GCRISO
Nodes x25	9.2 10-4	Weibull1 ; SET amplitude 1 ; depth 50µm ; GCRISO
Nodes x50	6.7 10-4	Weibull1 ; SET amplitude 1 ; depth 50µm ; GCRISO



SET rate predictions: the dispersion 4/4

Variation of the SET rate

- With SET amplitude

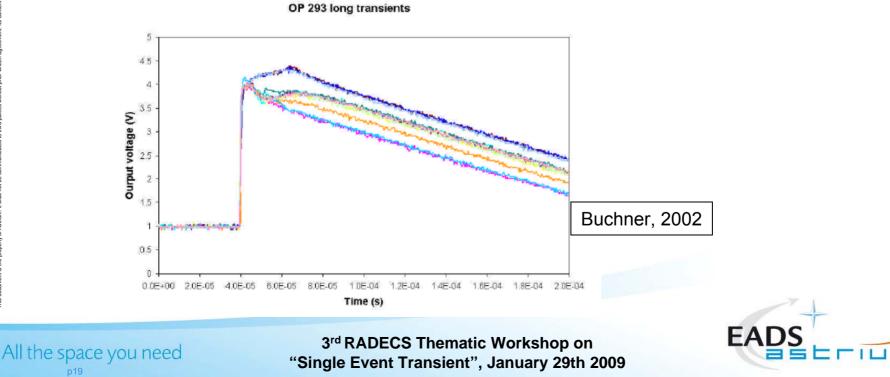
SET rate prediction: radiation environment definition

- Topic not specific to SET, however to be also considered when performing SET rate prediction
- From in flight experience, we see that up to now almost all of the observed events are due to Galactic Cosmic Rays (GCR) (see also TAS presentation, this thematic day)
- However, when SET has an impact on a function of an equipment that can lead to a mission outage, prediction shall consider the various contributors of the radiation environment
 - GCR and Solar Particle Event (using the most "reasonable" model)
 - Trapped and Solar protons if device exhibit a sensitivity to proton induced upsets

SET rate prediction: influence of the environment

Variation of the SET rate

	SET rate (/device/day)	Calculation conditions
GCRISO sol min	3.3 10-3	
CREME86 M=1 sol min	2.9 10-3	Node x1 ; SET amplitude 1 ; depth 10µm ; Weibull 1
CREME86 M=8	1.5	



Conclusion 1/2

- Baseline of RHA for SET remains a design responsibility. However, in some cases SET rate prediction can be needed
 - Trade of between design countermeasure and risk linked to SET occurrence rate not in favour of design solution
 - Use of uncharacterized device in a critical function; some devices may exhibit very long transient duration

Conclusion 2/2

When performing SET rate prediction, one shall take care of

- The reliability of the SET ground test data
 - Traceability of the device and the function/application
 - Adequacy of SET threshold
- The reliability of calculation hypothesis
 - Fitting function used (if any)
 - Sensitive depth determination
 - Number of sensitive nodes
- The definition of the radiation environment
 - Solar flare model for heavy ions
 - The particle type that can trigger a SET, for the considered application (need to include proton calculation?)

All the space you need