

# **Evaluation of Adhesive Materials for High-Reliability Flip-Chip Assembly**



### **Finbarr Waldron**



Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland.



Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05





# **Presentation Outline**

- Objectives & Technology Overview
- Flip-Chip Adhesives Evaluation Programme
  - Materials Selection & Property Evaluation
  - Flip-Chip Test Chip
  - VFL Substrate
  - > Test Vehicle Assembly / Assembly Verification
  - Reliability Evaluation
- Conclusions & Acknowledgements









COSA ESTEC

Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05



# **Introdution - Aims & Objectives**

- Evaluate reliability of commercially-available flip-chip adhesives for use in space applications.
- Study a representative range of materials.
- Determine thermomechanical properties & behaviour.
- Assess quality of assembly achievable.
- Measure thermal performance.
- Investigate ability to withstand harsh environmental stresses.

#### Work Undertaken by:

- Tyndall National Institute, Cork, Ireland (Prime Contractor)
- ASTRIUM, Velizy, France (VFL substrates)





Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05



## **Micropackaging Technology**

**Traditional Packaging Technologies:** 

- Advantages:
  - Well proven technologies
  - Robust & Reliable (especially ceramic & metal-can)
  - Good thermal performance (ceramic / metal)
  - Cost-effective (plastic)
- Drawbacks:
  - More complex than necessary
  - Electrical performance
  - Limited density
  - Size & weight













# **Micropackaging Technology**

### **Comparison of Alternative Packaging Options:**

| <u>Type</u> | Footprint Area |
|-------------|----------------|
| QFP:        | 900 mm² - 100% |
| TAB:        | 400 mm² - 44%  |
| COB:        | 225 mm² - 25%  |
| CSP:        | 115 mm² - 13%  |
| Flip-Chip:  | 100 mm² - 11%  |



(Source: Hewlett Packard)



## **Flip-Chip Technology**

### Flip-Chip Packaging:

- What?
  - Direct attachment of the IC to a substrate
- Why?
  - Almost zero interconnection parasitics between chip and package
  - Possible to put chips almost edge to edge
  - High packing density of ICs
    - Standard PCB: 10% of area occupied by silicon
      - ("packing density")
    - Flip-chip PCB: 75% packing density
  - Very short interconnect high speed



IC edge to edge distance using plastic packages





IC edge to edge distance using flip-chip





# Flip-Chip Technology

#### Solder-based Flip-Chip Assembly:

- Controlled Collapse Chip Connection (C4)
- Originally developed by IBM in 1960's.
  - Form solder bumps on chip pads
    - Mask & deposit
    - Plated bumps
  - Place chip on substrate & align accurately
  - Reflow (high temp.)
  - Underfill (increases bond area reduces stress)

### Adhesive-based Assembly:

- Chip bumps not always required
- Typical bump metalisation Ni/Au (Electroless deposition)
  - Adhesive applied to substrate (blanket or selective deposition)
  - Place & align chip
  - Cure adhesive (usually low temp. process).













# **Flip-Chip Assembly Technologies**

#### Solder Flip-Chip:

- Advantages:
  - Very robust joints.
  - Solder wetting forces aid alignment.
  - Good thermal performance
    - heat transfer through joints.
  - Good electrical performance.
  - High density, small size & weight.

#### Disadvantages:

- Thermo-mechanical stresses high
  - joints unyielding.
- Requires very well controlled process.
- High temperature process.
- Cost need high density to justify.

#### Adhesive Flip-Chip:

#### Advantages:

- Compliant nature low stresses.
- Fine pitch capability.
  - Easy assembly process
    - Iow temp & no fluxes.
  - Reasonable cost.

#### Disadvantages:

- Poorer electrical performance
- Reduced thermal performance
- Long term reliability questionable
  - harsh environments ??
- Best suited to small-area die.





Hybrids, MCM, Interconnection & Micropackaging WG - 27th Apr. '05



# **Presentation Outline**

Objectives & Technology Overview

### Flip-Chip Adhesives Evaluation Programme

- Materials Selection & Property Evaluation
- Flip-Chip Test Chip
- VFL Substrate
- > Test Vehicle Assembly / Assembly Verification
- Reliability Evaluation
- Conclusions & Acknowledgements











Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05

#### **CTB Programme**



## **Adhesive Flip-Chip Technology**

|     | <ul> <li>Need not be selectively deposited</li> <li>Low filler particle loading</li> <li>Particles form connections when adhesive is compressed</li> <li>Z-axis conduction only</li> </ul>                         | <ul> <li>Filler types:</li> <li>Au-coated polymer spheres</li> <li>Solid metal spheres (plated)</li> <li>LMP Solders (Sn-Bi)</li> </ul>                                                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <ul> <li>High filler particle loading<br/>(typically Ag flake)</li> <li>Conductive in all directions</li> </ul>                                                                                                    | <ul> <li>Must be selectively deposited:</li> <li>Screen / stencil printing<br/>with very accurate alignment</li> <li>Transfer by contact with<br/>thin film</li> </ul>                                       |
| NCA | <ul> <li>Deposited on entire placement area</li> <li>Non-conductive – no filler particles</li> <li>Connection formed by pressure</li> <li>Connection maintained by high<br/>shrinkage forces after cure</li> </ul> | <ul> <li>Connection quality enhanced by surface asperities</li> <li>Can be used with fusible solder coatings on contact surfaces</li> <li>Reflow after high-temp cure</li> <li>Robust connection.</li> </ul> |



Hybrids, MCM, Interconnection & Micropackaging WG – 27<sup>th</sup> Apr. '05





## **Evaluation Programme**



#### **CTB Programme**



## **Summary of Selected Materials**

#### **Anisotropic Conductive Adhesives (ACA)**

- ACA 1: Loctite 3441 Anisotropic Conductive Adhesive, Gold-coated polymer filler.
- ACA 2: Loctite 3446 Anisotropic Conducive Adhesive, Fusible Bismuth Spheres filler.
- ACA 3: Bondline 2909 Anisotropic Conductive Adhesive, Gold-coated polymer filler.
- ACA 4: Creative Materials Inc. CMI 121-23, Anisotropic Conductive Adhesive, Silver flake filler.
- ACA 5: Dexter TG 9001 R1 Anisotropic Conductive Adhesive, Gold particle filler.

#### **Isotropic Conductive Adhesives (ICA)**

- ICA 1: Loctite 3880 Isotropic Conductive Adhesive Silver flake filler.
- ICA 2: Delo ICABOND IC182 Isotropic Conductive Adhesive Silver flake filler (75% wt.)
- **ICA 3:** Bondline 2920 Isotropic Conductive Adhesive Silver Flake filler.
- ICA 4: Creative Materials Inc. CMI 118-06-SD -Isotropic Conductive Adhesive Silver (74% wt.).

#### **Non-Conductive Adhesives (NCA)**

- NCA 1: Loctite 3565 Non-Conductive Underfill Adhesive
- NCA 2: Hysol QMI 536 Non-Conductive Adhesive, PTFE-filled.
- **NCA 3:** Creative Materials Inc. CMI-122-24 Non-Conductive Low-Stress Underfill Nitride filler.
- NCA 4: Bondline 6900 Low Viscosity Non-Conductive Underfill Adhesive



Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05











# **Presentation Outline**

- Objectives & Technology Overview
- Flip-Chip Adhesives Evaluation Programme
  - > Materials Selection & Property Evaluation
  - Flip-Chip Test Chip
  - VFL Substrate
  - Test Vehicle Assembly / Assembly Verification
  - Reliability Evaluation
- Conclusions & Acknowledgements









Cesa Estec

Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05



#### **Material Properties Studied:**

Coefficient of Thermal expansion (CTE) – Thermo-mechanical Analyser (TMA)

Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05

- Glass Transition temperature (T<sub>α</sub>) Differential Scanning Calorimeter
- Young's Modulus (e) DMTA / Instron Tester
- Lap Shear Strength Instron Tensile Tester

| Adhesive      | Туре | Measured Tg | Datasheet T <sub>g</sub> |
|---------------|------|-------------|--------------------------|
|               |      | (°C)        | (°C)                     |
| Loctite 3441  | ACA  | 146.3       | 150                      |
| Loctite 3446  | ACA  | 151.7       | 156                      |
| Bondline 2909 | ACA  | 117.8       | 121                      |
| CMI-121-23    | ACA  | 107.3       | 105                      |
| Dex TG9001-R1 | ACA  | 109.3       | 110                      |
| Loctite 3880  | ICA  | 95.3        | 64                       |
| Delo AC-182   | ICA  | 86.7        | 90                       |
| Bondline 2920 | ICA  | 110.6       | 113                      |
| CMI-118-06    | ICA  | 98.1        | 100                      |
| Loctite 3565  | NCA  | 145.3       | 155                      |
| Hysol QMI 536 | NCA  | N/a         | -31                      |
| CMI 122-24    | NCA  | 95.3        | 127                      |
| Bondline 6900 | NCA  | 125.4       | Not Quoted               |



**Tyndall DSC System** 

Measured Glass Transition Temp. (T<sub>q</sub>) v Datasheet Values.





|               | Measured Values       |                                   | Datasheet Values                  |                                   |
|---------------|-----------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Adhesive      | CTE below Tg<br>(ppm) | CTE above T <sub>g</sub><br>(ppm) | CTE below T <sub>g</sub><br>(ppm) | CTE above T <sub>g</sub><br>(ppm) |
| Loctite 3441  | 57.3                  | 151.2                             | 55                                | 140                               |
| Loctite 3446  | 54.0                  | 147.8                             | 55                                | 140                               |
| Bondline 2909 | 36.3                  | 104.1                             | 35                                | 100                               |
| CMI-121-23    | 58.7                  | 160.2                             | Not Quoted                        | Not Quoted                        |
| Dex TG9001-R1 | 70.1                  | 154.2                             | 67                                | Not Quoted                        |
| Loctite 3880  | 68.7                  | 191.2                             | 110                               | 188                               |
| Delo AC-182   | 88.3                  | 197.2                             | Not Quoted                        | Not Quoted                        |
| Bondline 2920 | 76.7                  | 173.2                             | 79                                | 189                               |
| CMI-118-06    | 28.7                  | 148.2                             | 17                                | 147                               |
| Loctite 3565  | 28.7                  | 92.4                              | 25                                | 80                                |
| Hysol OMI 536 | N/a                   | 190.9                             | 93                                | 174                               |
| CMI 122-24    | 38.2                  | 160.2                             | 55                                | 168                               |
| Bondline 6900 | 60.5                  | 120.1                             | 31                                | 31                                |



Measured CTE Values v Datasheet Values.

TMA Scan – Loctite 3880

#### **Results:**

- CTE, Tg & Bond Strength show reasonable agreement with manufacturer's values (where quoted).
- For CMI-122-24, Measured  $T_g = 95.3^\circ$  (Manufacturer's  $T_g = 127^\circ$ C).
- In many cases Tg < 125°C</p>
- Modulus values not quoted in many cases.
- Bond strengths generally high, but Loctite 3565 has quoted bond strength of 4.9 MPa.



















**ICA Results:** 

#### **ACA Results:**



Finite Element Model at +125°C showing worst case stress condition for ACA materials.

- Acts as own underfill large bond.
- Compliant & relieves stress.
- Stress negligible at each temp (-55°C and +125°C).
- Unlikely to fail due to stress
- Conduction may be disrupted by movement – 3 mm possible.



Finite Element Model at +125°C showing worst case stress condition for ICA materials.

- Smaller bond area.
- Also compliant.
- Stresses higher than ACA, but still low overall.
- Unlikely to fail due to stress
- High filler density less Affected by movement.

#### NCA Results:



Finite Element Model at -55°C showing worst case stress condition for NCA materials.

- No adhesive in joint area.
- Compliant.
- Slightly higher stresses than ACA.
- One material could fail due to stress > bond strength (Loctite 3565).







#### **Conclusions – Materials Property Evaluation:**

- Greatest choice of adhesives for flip-chip assembly were in the ACA category.
- Measurement of CTE for all of the selected materials showed good agreement with manufacturers values (where quoted).
- Measurements of T<sub>g</sub> for the adhesives also agreed closely with the manufacturers figures (except one NCA CMI-122-24 where T<sub>g</sub> = 95.3° (CMI T<sub>g</sub> = 127°C).
- T<sub>a</sub> in many cases is lower than the target 125°C upper operating temperature.
- Modulus information not quoted for many adhesives.
- Expected stresses in all materials are low due to their compliant / soft nature.
- ACA may be prone to movement of up to 3.0 mm leading to a risk of open circuits.
- ICA also prone to risk of movement, but open circuits less likely due to filler density.
- Highest risk of stress failure is with NCA material (L 3565) at 125°C where model predicts Von Mises stress of 3.9 MPa. Loctite 3565 has quoted bond strength of 4.9 MPa.







# **Presentation Outline**

- Objectives & Technology Overview
- Flip-Chip Adhesives Evaluation Programme
  - Materials Selection & Property Evaluation
  - Flip-Chip Test Chip
  - VFL Substrate
  - > Test Vehicle Assembly / Assembly Verification
  - Reliability Evaluation
- Conclusions & Acknowledgements











Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05



# WP2: Flip-Chip Test Chip

#### **Test Chip Details:**

- 1 Polysilicon Heater Resistor.
- 6 Temp-Sensing Diodes.
- I Triple-track Corrosion Monitor.
- 14 Peripheral Daisy Chains.
- 1 Pad Array (23 X 23).
- Basic unit size = 5 mm X 5mm.
- Designed to allowed multi-unit die.
  - ≻ 10 mm X 10 mm.
  - ≻ 15 mm X 15 mm.



Flip-Chip Test Chip with Ni/Au bumps



Flip-Chip Test Chip (5 mm X 5 mm)



**FCTC Test Structures** 



Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05



#### **CTB Programme**



# WP3: VFL Substrate

#### Substrate Details:

- Very Fine Line (VFL).
- High-reliability substrate.
- Ceramic material.
- Thick film technology.
- Single interconnect layer.
- 3 chip sizes per substrate.
  - ▶ 5 mm X 5 mm.
  - ▶ 10 mm X 10 mm.
  - ▶ 15 mm X 15 mm.
- 50.0 mm X 50.0 mm.
- 50 mm track & gap.
- Edge connector.
- 180 i/o pads.









**VFL** substrate layout

designed for FCTC to allow daisy chains of

Joints to be formed.

Detail Views – Astrium VFL substrate.







## WP3: VFL Substrate

#### **Substrate Verification:**

- Electrical continuity
  - Flying probe tester (Astrium)
- Optical & SEM Inspection (NMRC)
  - Dimensions & pitch etc. correct
  - > Metalisation quality / composition
- Metal tape adhesion test
- 80 manufactured / 60 required



#### Single Chip Site

- 2 daisy chains per chip
- Continuity & isolation measurements.
- 2 inputs, 2 outputs & 2 intermediate.
- 1 set of heater & diode connections



#### 3 X 3 Chip Site (15 mm X 15 mm)

- 2 daisy chains per single chip.
- Continuity & isolation measurements across full area of 15 mm X 15 mm chip.
- 2 inputs, 2 outputs & 11 intermediate connections in total.
- Only 2 intermediate connections for dice 4,5,6.
- 6 sets of heater & diode connections







#### **Process Flow:**





Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05







- Tyndall Fineplacer 145 PICO Flip-Chip Bonder.
- Manual Alignment.
- Small Volume Lab System.
- Tyndall Research Devices M3 Flip-Chip Bonder.
- Semi-automatic.
- Prototyping Quantities.





**ACA Flip-Chip Bonds** 





Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05



#### **Optimised Process Conditions:**

| Bondline 2909 ACA:                  |                                                    | Loctite 3565 NCA: |                                                    |
|-------------------------------------|----------------------------------------------------|-------------------|----------------------------------------------------|
| Recommended cure:                   | 175°C, 30 sec, 35 MPa.                             | Recommended cure: | 150°C, >60 min                                     |
| <ul> <li>Optimised cure:</li> </ul> | 140°C, 30 sec,<br>160°C, 5 sec<br>Load = 40 Mpa.   | Optimised cure:   | 150°C, 60 min<br>Load = 50 MPa                     |
|                                     | → Thickness = 7.0 mm.<br>(approx)                  |                   | → Thickness ~ 28.0 mm<br>(between joint areas)     |
| Bond Strength:                      | > 5 Kg shear for 5x5 die<br>(non destructive test) | Bond Strength:    | > 5 Kg shear for 5X5 die<br>(non destructive test) |
| Joint Resistance:                   | 4.0 to 9.0 <b>W</b> (mean).                        | Joint Resistance: | 10.0 <b>W</b>                                      |





Hybrids, MCM, Interconnection & Micropackaging WG – 27<sup>th</sup> Apr. '05

#### **CTB Programme**



## **WP4: Test Vehicle Assembly**

#### **Verification Procedure:**

- High Mag. Inspection.
- X-Ray Inspection.
- SAM Inspection.
- Electrical Check.
- Bond Test (5Kg Shear).
- Thermal Resistance.
- Bond Shear Test (Destructive).

Open

Circuits

Microsection (Destructive).

#### Main Problems / Issues:

- Misalignment.
- Excess Adhesive.
- Inadequate Pressure.
- Substrate Flatness.



**Complete Assembly** 



Misalingment



**SAM Image - Tilt** 



**Poor ACA Joint** 



X-ray Alignment Check









#### **Assembly Verification:**



**Good Edge Fillet - ACA** 



**Good ACA Joint** 



**Good ACA Joint** 





#### **Summary of Thermal Evaluation:**

| ICA Materials: | Quoted:<br>Measured (Av.):<br>*High Ag Content but s       | 2.00 – 3.20 W/m°K<br>2.57 W/m°K<br>selective deposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water Cooled Cold Plate                         |
|----------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| ACA Materials: | Quoted:<br>Measured (Av.):<br>*Blanket deposition he       | 0.70 - 1.20 W/m°K<br>1.05 W/m°K<br>Mark Structure Stru<br>Structure Structure Structu | Topplate<br>Insulator<br>Baseplate<br>Baseplate |
| NCA Materials: | Quoted:                                                    | 0.02 - 0.03 W/m°K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water Cooled Cold Plate                         |
|                | Weasured (AV.):<br>Measured (Av.):<br>*Good bump-to-substr | 0.92 W/M°K (good)<br>0.22 W/m°K (poor)<br>rate contact helps result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dual Cold Plate System                          |





Hybrids, MCM, Interconnection & Micropackaging WG – 27<sup>th</sup> Apr. '05

#### **CTB Programme**



## **WP4: Test Vehicle Assembly**

#### **Electrical Evaluation:**









# **Presentation Outline**

- Objectives & Technology Overview
- Flip-Chip Adhesives Evaluation Programme
  - Materials Selection & Property Evaluation
  - Flip-Chip Test Chip
  - VFL Substrate
  - > Test Vehicle Assembly / Assembly Verification
  - Reliability Evaluation
- Conclusions & Acknowledgements











Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05





#### **CTB Programme**



# **WP5: Reliability Evaluation**

#### **Monitored Thermal Cycling Test:**

- Mil-Std-883E, Method 1010.7
- Upper Temp: +125° C
- Lower Temp: -55°C
- Dwell: 15 Min
- No. of Cycles: 500
- Tests at 100, 200 & 500 cycles.

#### Temp / Humidity / Bias Test:

- JESD A-101 B
- Temperature: +85° C
- Humidity: 85% RH
- Bias: -10V / Gnd /+10V

1.000 hours

- Duration:
- Interim Tests at 168, 500 & 1,000 hrs.





Monitored Thermal Cycling Test



#### **Interim Test Sequence:**

- Electrical Check
- Visual Inspection
- X-ray Inspection
- SAM Inspection
- Thermal Resistance

Humidity Test







STEC



## **WP5: Reliability Evaluation**

**Monitored Thermal Cycling Test (Daisy Chain Resistance):** 



Hybrids, MCM, Interconnection & Micropackaging WG – 27<sup>th</sup> Apr. '05





#### Monitored Thermal Cycling Test:

- Significant Electrical Failure Rate from all three adhesive families.
- Significant early failure trend with ACAs.
- More gradual trend with ICA materials.
- Dramatic early failure rate with NCAs.
- Thermal performance also deteriorates.
- Failures due mainly to thermo-mechanical expansion, movement, delamination & softening (Tg).



Thermal Conductivity Change Thermal Cycling Test





Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05



**Temperature / Humidity / Bias Test (Corrosion Track Resistance):** 





Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05





#### Temperature / Humidty / Bias Test:

- Significant Electrical Failure Rate from all three adhesive families.
- Least no. open circuits from ICAs.
- Worst open circuit performance from NCAs.
- Highest leakage current in ICA case (Ag).
- Lowest leakage current in NCA case (no filler).
- Open circuit failures due mainly to corrosion.
- High leakage currents due to dendrites,
- & ionic content of materials.



#### Leakage Current during THB Test





Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05



# **Presentation Outline**

- Objectives & Technology Overview
- Flip-Chip Adhesives Evaluation Programme
  - Materials Selection & Property Evaluation
  - Flip-Chip Test Chip
  - VFL Substrate
  - > Test Vehicle Assembly / Assembly Verification
  - Reliability Evaluation
- Conclusions & Acknowledgements





Substrate



Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05





## **Conclusions 1**

- Adhesive do not meet demands of harsh-environment stress tests.
- Tg is much lower than + 125°C in many cases:
  - > Poor thermomechanical behaviour.
  - > Materials soften at elevated temperatures.
  - > Movements & open circuits occur.
- Adhesive flip-chip best suited to small-area dice:
  - > More difficult tocontrol deposition quality over a large area
  - > Substrate roughness an issue
- Selectively-Deposited ICA materials probably best overall:
  - > Best electrical & thermal properties.
  - > Selective deposition lower risk of shorts
  - > Did show higher leakage currents in THB tests (migration / dendrite growth).







## **Conclusions 2**

- Performance in Temperature Cycling Test Poor
  - > Large no. of open circuts caused.
  - > Thermomechanical movement.
- Corrosion failures occured in THB test:
  - > Adhesives absorb moisture.
  - > Non-hermetic protection.
  - > Adhesives contain ionic elements.
  - > High leakage currents, especially with ICAs.
- Adhesives best suited to small are die used in benign environments.
- Not suited to the demands of the space environment !!





## **Acknowledgements**

- ESA / ESTEC Funding for Project
  - Alberto Boetti Technical Supervision & Guidance.
- Astrium, Velizy, France
  - Jean-Claude Tual Substrate Layout.
  - Brigitte Braux Astrium Project Manager.

#### Tyndall

- Gary Relihan Materials Properties.
- Denis O' Mahoney FE Modelling.
- Adrian Mulcahy Assembly & Analysis Work.
- Eoin Sheehan Chip and Substrate Test.
- Tony Compagno Reliability Tests.



Hybrids, MCM, Interconnection & Micropackaging WG – 27th Apr. '05

