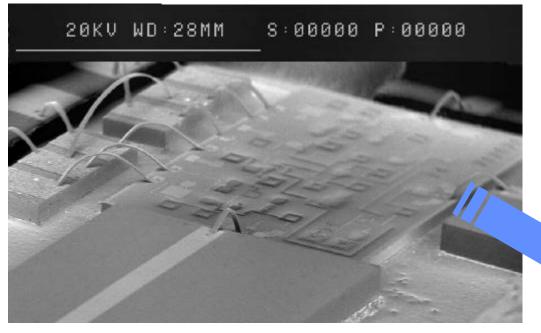
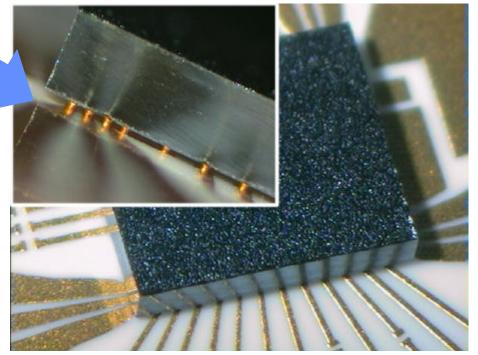


Alcatel Space - Toulouse - France

C. Schaffauser - C. Drevon



Flip chip Vs wire bonding Which flip chip in microwave modules ? Main results and characteristics thermo mechanical daisy chains underfill microwave (HFSS simulations and measurements) flip chip module parasitic mode Non Destructive Test



Flip chip Vs wire bondin

Wire bonding towards flip chip

mechanical interface : glue electrical interface : glue and wires Only one mechanical and electrical interface : bumps

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

All rights reserved © 2005, Alcatel Space

Flip chip Vs wire bondin

Flip Chip or Gluing&Wire bonding ?

- Cons Flip Chip
 - Hectrical
 - the back of the die must be well connected to ground
 - Fabrication
 - "new" process (gluing and wire bonding still present)
 - Control is more difficult and visual inspection is impossible after assembly
- Pros Flip Chip
 - Electrical
 - better RF performances
 - perfect for reaching higher frequencies
 - better performances
 - wider frequency bandwidth (less selective)
 - more repetitive results

Flip chip Vs wire bondin

Alcatel Flip Chip Needs

- When wire bonding assembly is limited
 - - when heat dissipation through GaAs is not enough,
 - thermal bumps near transistor hot parts

- when bonding 2 or 3 wires in parallel is not sufficient for good S11,
- when parasitic effect of wires can not be cancelled any more,
 - need for thin and high bumps
- Quality Insurance
 - Thermal Expansion Coefficient difference between die and substrate can quickly create failure
 - Need for underfill ? Which underfill ?
 - Verification with thermal cycles
 - Non destructive Control ?

Which flip chip in microwave modules ?

- Main results and characteristics
 - thermo mechanical
 - daisy chains
 - underfill
 - microwave (HFSS simulations and measurements)
 - flip chip module
 - parasitic mode

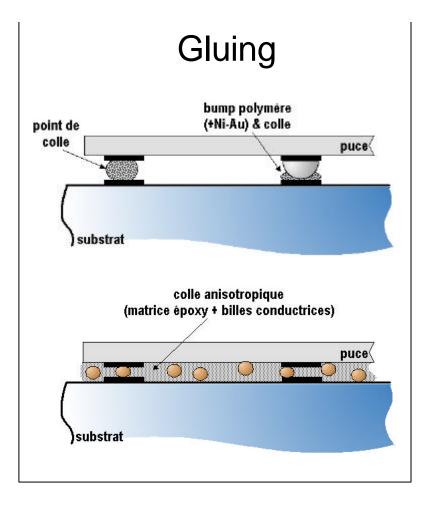
Non Destructive Test

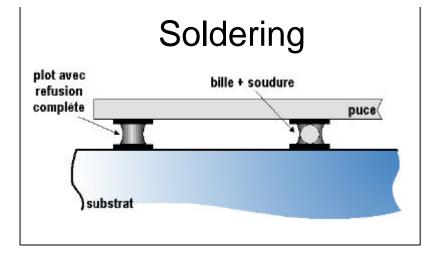
Which flip chip

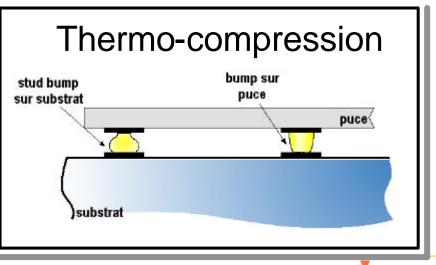
RF application particularities

- GaAs components (usually 100 µm thick)
- rightarrow pad dimensions and pitch : 50 to 100 μ m Au top metallization

in a flip chip configuration


- package influence on RF performances
 - material electrical characteristics (dielectric constant, losses...)
 - ground plane position, connection, quality and proximity,
 - gap height between die and substrate...


Impose of the time : microstrip access on substrate and ground plane just beneath



Which flip chip

Which Flip Chip for microwave applications ?

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

Which flip chip

- Alcatel Space hyper frequency dice are GaAs dice with gold pads
 - - no SnPb solder directly on die
 - AuSn would be more appropriate
 - quite high temperature process

- ➡ Is one solution when low temperature process is needed (ex : organic parts)
- still need small pitches and thin and high bumps
 - gold bumps too
 - not compatible with usual gluing techniques
- Compatible with Silicon and GaAs pads
- Thermocompression ?
 - Alcatel Space main experience
 - compatible with gold pads and their small dimensions and pitches
 - but high temperature process
 - gold bumps

Which flip chip

STATISTICS IN COLUMN

FC 150

Suss Microtec Flip chip machine

- Thermocompression or refusion
 - depends on used arm
- - maximum temperature : 450°C
 - Maximum Load : 50 Kgf
- Parallelism correction :
 - with optical autocollimation system (if die and substrates have highly reflective metallization)

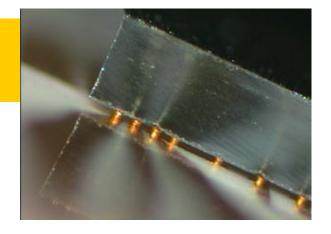
.....

- with Laser system (if metallization is not reflective enough)
 - most of the time the case with GaAs dice

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

All rights reserved © 2005, Alcatel Space

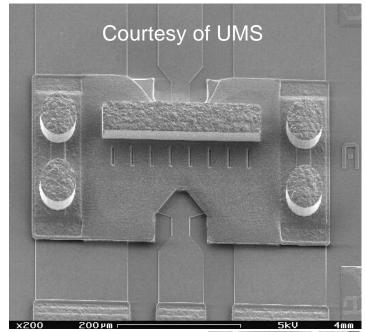
Flip Chip under study at Alcatel Space

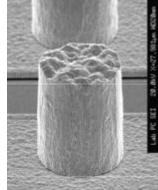

Power Flip Chip

- ➡ Gold thermal bumps made on wafer (by the foundry)
- ➡ High Thermal dissipation substrate (AIN, Diamond...) with thin film and via

Low Power Flip Chip

- ➡ Gold stud bumps (3 possible heights) made by HCM La Rochelle
- Al₂O₃ substrate with thin film and via
- **Possible "dice"** : MMIC, transistors, MEMS
- Mostly used technique : thermocompression





"Power Applications"

Electrolytic Bumps

- - perfect for mass production
 - gold electrolytic growth
 - Height \leq Diameter
 - Excellent for thermal dissipation
 - Thermal bumps on the hottest points of the transistors
 - Critical Points
 - How to perform electrical tests ?
 - No proper evaluation due to bump fabrication default
- Some foundries can make those bumps on GaAs, GaN, SiC wafers

Courtesy of UMS

"Standard Applications" Stud Bumps

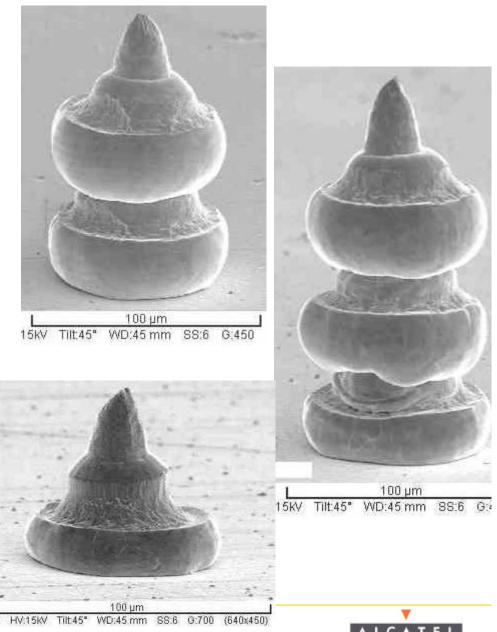
can use MMICs of the shelves
Adapted to both RF and LF part dimensions

60µm diameter

Several possible heights

20 to 90µm

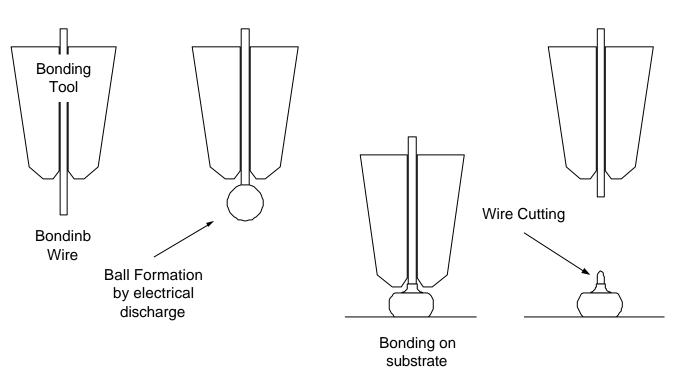
Very good adhesion on AIN and Alumina substrates


around 20gf per bump

Evaluation performed on HCM bumps

ESTEC Study (2004)

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,


Which flip chip

Which flip chip

Stud Bump Theory

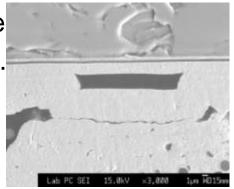
- Two ways of performing stud bumps
 - 1 PANASONIC patent
 - gold wire used for wire bonding (same gold)
 - wire cutting by a quick movement of bonding tool wire torsion
 - stitch against the ball
 - 1 2 HCM bumps
 - wire pulling until break
 - dedicated gold wire (1 or 2% palladium for wire breaking)
 - usually 20 μm
 diameter wires, could
 be 17.5 μm

Which flip chip

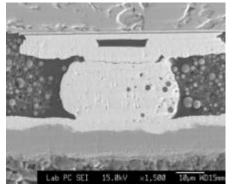
HCM Stud Bumps possibilities

- HCM La Rochelle France Micro electronic Packaging
- Design rules
 - **+/- 3,5 μm** accuracy with K&S8028 machine
 - Minimum pitch between bumps : 55 μm
 - Minimum pad dimension : 50 μm
- Gold wire
 - AW6 type gold wire with Pd 20 µm diameter
 - 18 µm diameter
- Machine and tools

 - K&S 8028PPS new machine
 - ⁽¹⁾Many tools can be used but difficult to test them all.



[⊕]Flip chip Vs wire bonding Which flip chip in microwave modules ? ^AMain results and characteristics thermo mechanical daisy chains underfill microwave (HFSS simulations and measurements) • flip chip module • parasitic mode Non Destructive Test



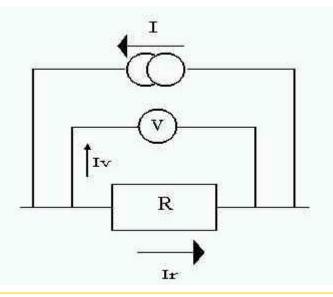
Process quality and reliability

- Hen optimising a process, one must check its quality and strength
 - just after assembly : see if all bumps are correctly connecte
 - after ageing tests : see if bumps stay correctly connected..
- Possible defaults
 - Too much strain between die and substrate (due to Coefficient of Thermal Expansion mismatch and big dice)
 - délamination between bump and pad
 - Pollution
 - no bump adhesion on pad
 - ⇒ Air trapped inside underfill (if there is some)
 - if those bubbles are against bumps, it might concentrate stress on those bumps
- Checking techniques
 - Cut / SEM / EDAX -> long and expensive
 - Daisy Chain and 4-point resistance measurement

Fabrication default o bumps made on the wafer by UMS

Daisy Chain Resistance Measurement

- The best way to control assembly quality and reliability
 - Oprecise and complete information on contacts at initial time & during ageing
 - Oto see the impact of chosen materials, dimensions...on assembly sturdiness
 - to find the weakest parts of assemblies
- ASP has a dedicated test bench 4 point resistance measurement
 deasy adaptation to different dice, assemblies...
 - -65% precision on a $1m\Omega$ resistance
 - very precise measurement of bump evolution
 - 4 automatic measurement of entire daisy chain and small parts of it
 - some defaults appear and progress very slowly
 - one bump default could stay a long time unnoticed as bump resistance


Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of

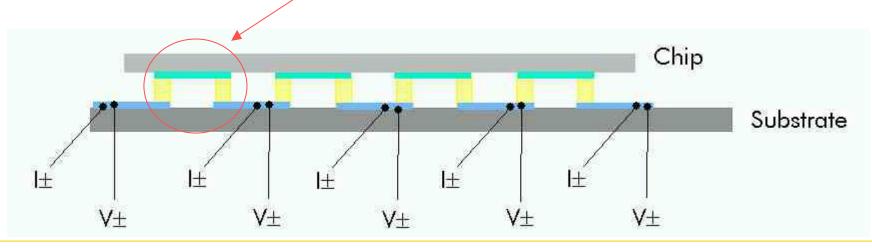
4 point resistance measurement Theory

lr » I

lv<<lr

- So measured resistance is nearly exact R
- Wires and lines that bring current or that measure voltage are not taken into account
- \bigcirc and moreover, any ΔR will be more easily noticed

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

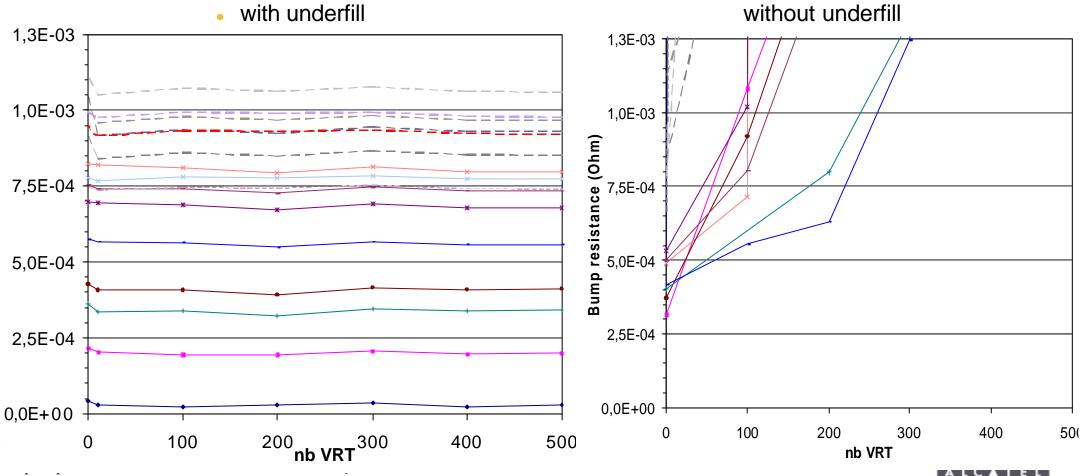

Thermo mechanica

Thermo mechanica

Bump pairs - ordinary daisy chains

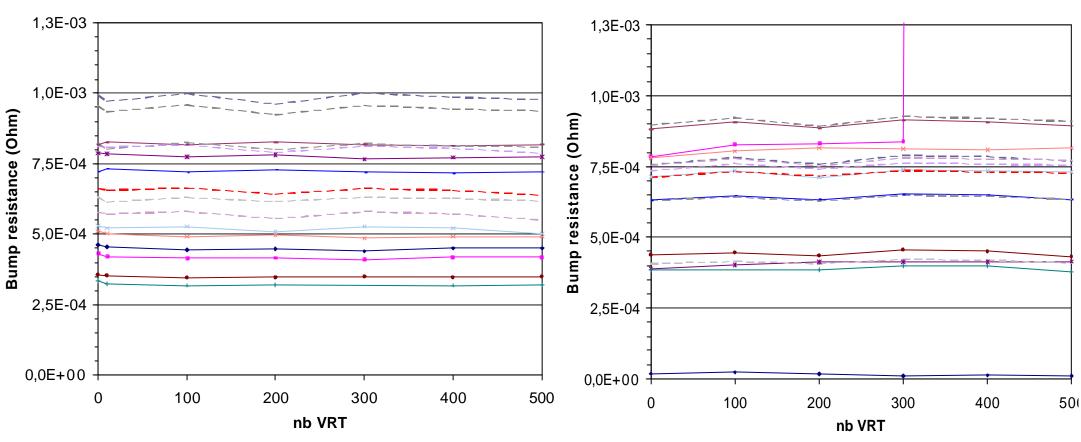
bumps are connected with lines alternately on die and substrate

- the total length of the daisy chain can be measured
 - immediate indication of failure
 - but not always information on default apparition
- or we can measure groups of "Two bumps and a line on die"
 - Measured resistance is smaller so one bump evolution should be visible
 - location of the default
- very simple principle and measurement



Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

Thermo mechanica


Some results with GaAs on alumina and AIN

- ⁽¹⁾Thermocompression process
- Thermal cycling
 - On AIN

On Alumina

with underfill

without underfill

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

All rights reserved © 2005, Alcatel Space

Why Underfill ?

Coefficient of Thermal Expansion Mismatch between die and substrate

High stress concentrated at the bump level

Chip	CTE @ 25°C (ppm/°C)	Substrate	CTE @ 25°C (ppm/°C)
GaAs	5.8	Alumina	5.25
Si	2.6	AIN	2.3

Solution : Underfill

Inserting a curable liquid resin between the die and the substrate

- Spread the thermally induced stress over the entire package
- - Small bump height : 20 to 50 microns
 - ⇒ Few bumps, mainly at the die periphery (i.e. high DNP)
 - Die size : from 1x1 to 5x5 mm²

Underfill Solutions

Capillary underfill

Underfill dispensed near the edge of the chip

- flow under the die by capillary action
- ^d cured when flow completed

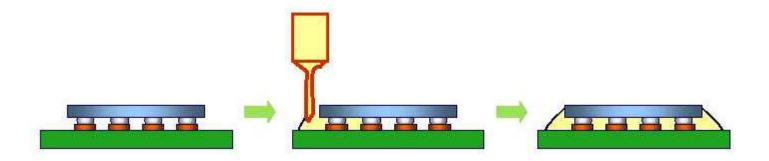
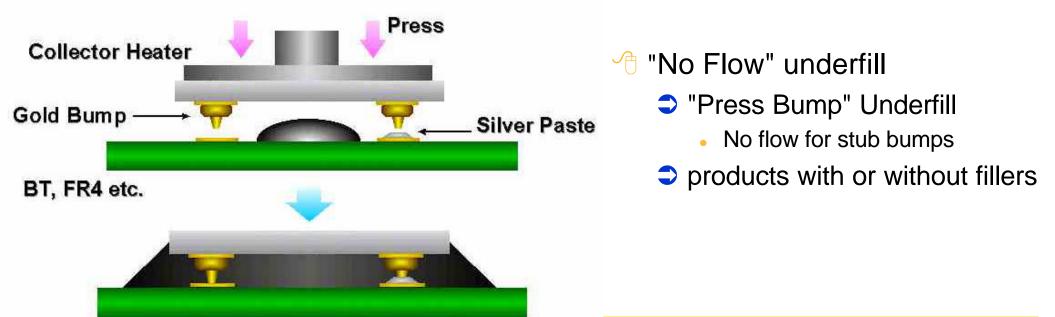


Image: Market Common State of Commercial Underfill


- Iimit for high volume : time consumming (flow time + curing time)
- new solutions under development

"No Flow" underfill

Underfill dispensed on substrate at the die location

- Chip is placed & pressed on the bump
- Ip chip assembly & underfill polymerisation at the same time
 - most of the time dedicated to solder bump
 - unfilled resin, so high CTE : source of fatigue
 - critical dispensing proccess ("floating chip")

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

Underfill ?

Pros : Fabrication et reliability

Proven effectiveness for die dimensions up to 5x5mm et 5.5x4mm on AIN circuit:

- Thermal cycles [-55;+125°C] : 500-1000 OK
- Storage at 125°C : 2000h OK
- Better and stabilise good but imperfect assemblies (// pb for ex).
- Assembly secured
- Less severe control

Cons : Fabrication and electrical

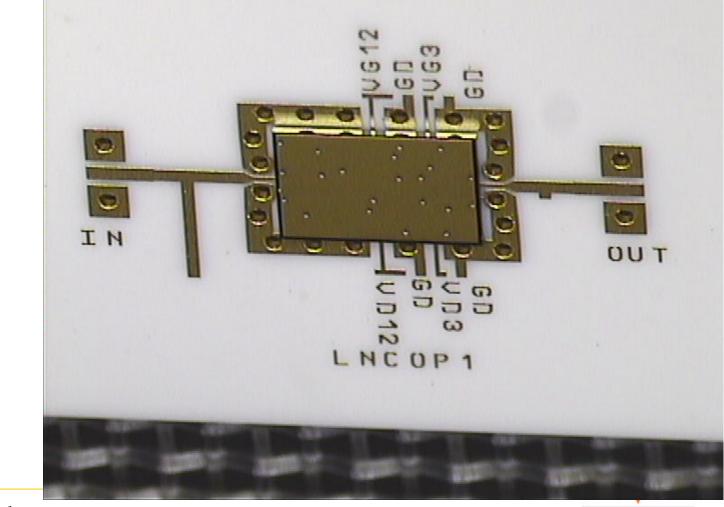
- New organic material (need evaluation and qualification)
- More fabrication steps
- More RF losses
- RF mismatch (frequency bandwidth gets lower)
 - MMIC design taken underfill into account (new library)
 - Or module design taken this frequency shift into account

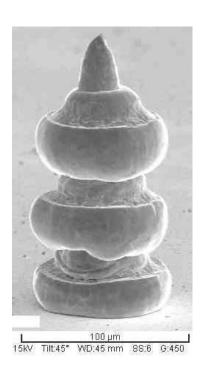
[⊕]Flip chip Vs wire bonding Which flip chip in microwave modules ? ^AMain results and characteristics thermo mechanical daisy chains underfill microwave (HFSS simulations and measurements) flip chip module parasitic mode Non Destructive Test

Microwave

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

Parasitic mode : type of "Parallel Plate Mode"

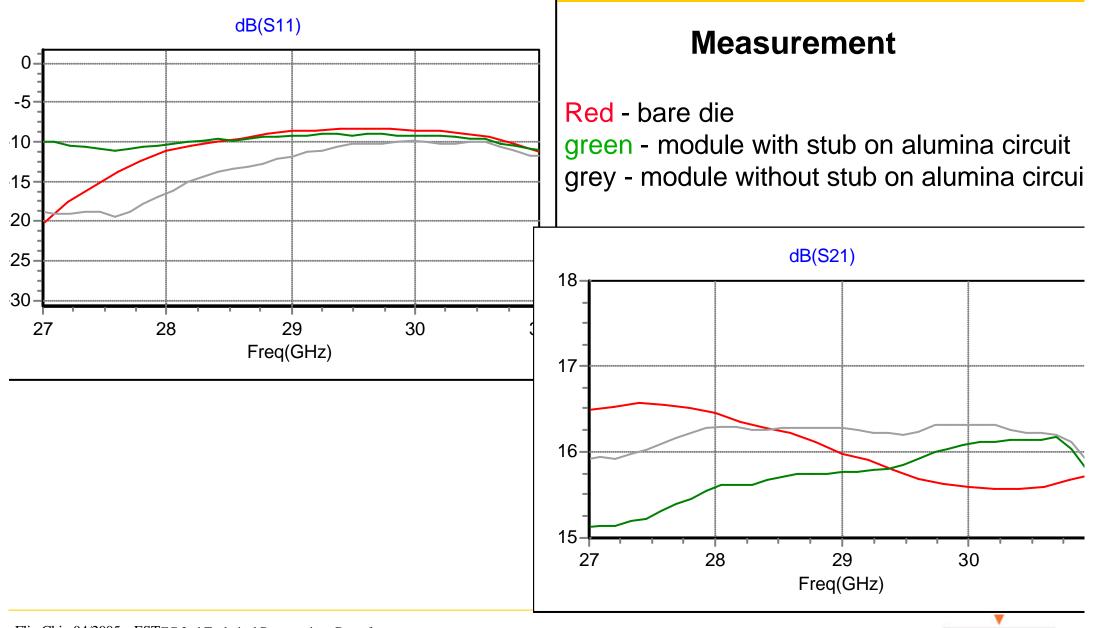

- Coupling between MMIC and circuit ground planes
 - happens in main application with the chosen flip chip topology
- \bigcirc Resonance frequency \succ if :
 - 🗢 die size 🛛 🌱
 - bump height >
 - \bigcirc ground bump position and number \succ
 - \bigcirc underfill between die and substrate (global ε r below the die \checkmark)
 - circuit thickness >
- Solutions
 - HFSS simulations before circuit design -> possible to move this resonance frequency above active bandwidth
 - Take it into account in MMIC design
 - or other flip chip configuration
 - ("Hot Via" or "Embedded transmission-lines (ETL)" topologies)



Microwave

Flip Chip assembly of a 30GHz LNA

LNAUM24A flip chip mounted on alumina circuit with HCM triple bumps



Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

All rights reserved © 2005, Alcatel Space

Microwave

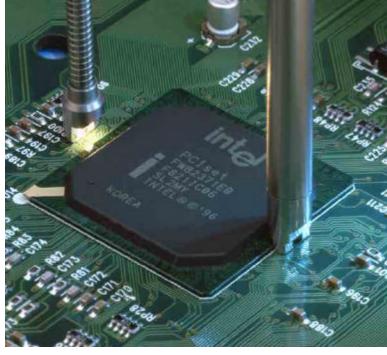
Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

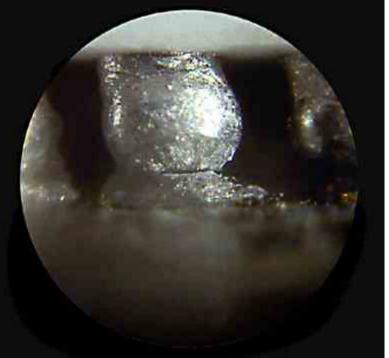
All rights reserved © 2005, Alcatel Space

[⊕]Flip chip Vs wire bonding Which flip chip in microwave modules ? ^AMain results and characteristics thermo mechanical daisy chains underfill microwave (HFSS simulations and measurements) • flip chip module parasitic mode Non Destructive Test

Control ?

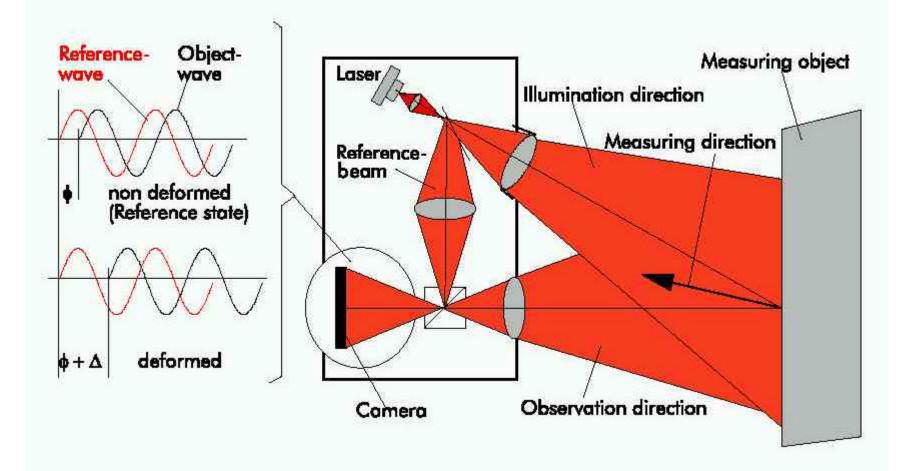
Non Destructive Control


- What makes it to difficult...
 - \bigcirc Bump dimensions -> ~60µm ϕ and height
 - Horizon ->at die periphery
 - Default dimension and nature -> lack of adhesion of delaminations betwee two gold layers
 - 1 Possible complexity of assembly (many metallic or different material layers
 - Possible presence of underfill if CTE mismatch is too big
- Techniques under test


 - Infra Red Microscopy BARNES / QUANTUM FOCUS

 - Stress analysis with ESPI system HIRONDELLE & ETTEMEYER

- Visual Inspection Ersascope
 - ⁴√ Very simple and direct technique
 - dapted to BGAs
 - Obut not enough accurate for bump and associated default dimensions
 - This technique must be watched (possible evolution)

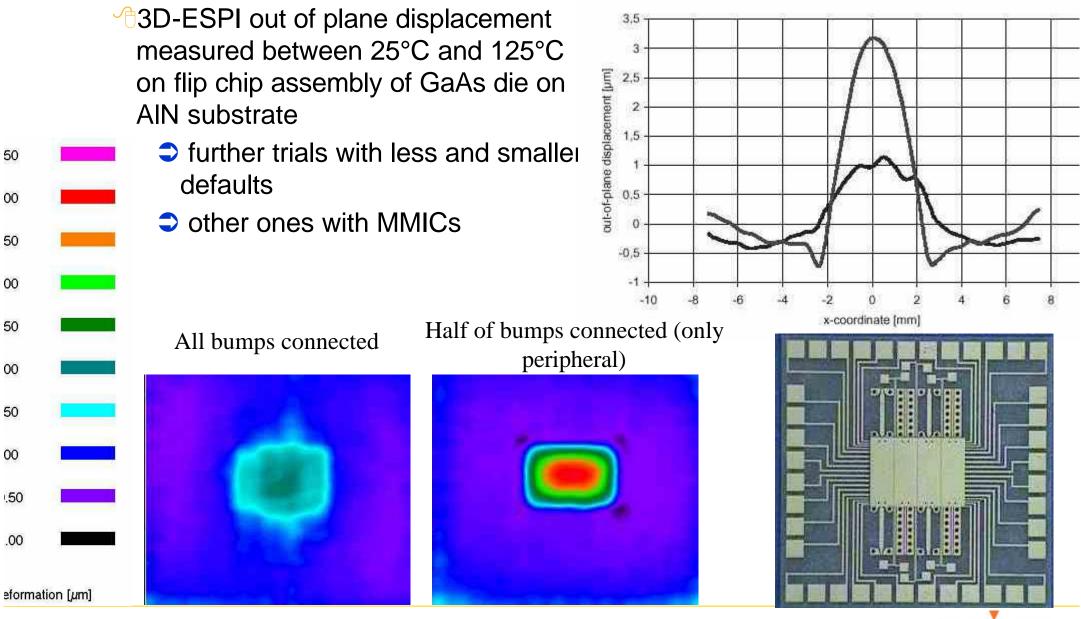


Control?

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

All rights reserved © 2005, Alcatel Space

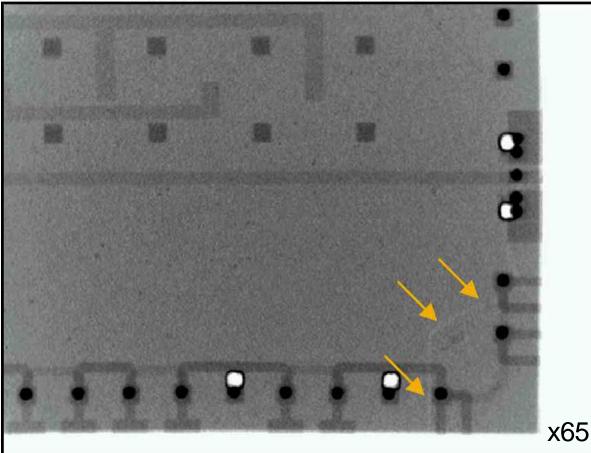
- ESPI technology of ETTEMEYER
 - European study HIRONDELLE (not finished)
 - 4 stress and deformation analysis through interferometry

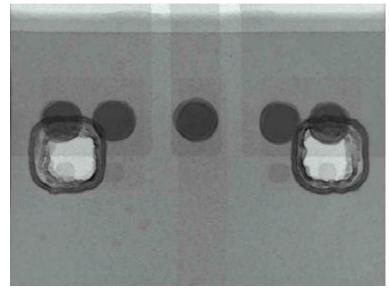


Control

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

Control ?



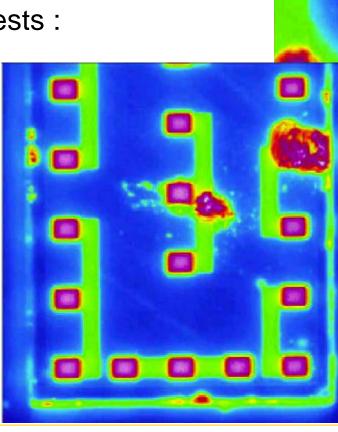

Flip Chip 04/2005 - ESTEC 2nd Technical Presentations Day of the activities of the CTB Working Group on Hybrids, MCM,

All rights reserved © 2005, Alcatel Space

X- ray microscopy (PHOENIX)

- \bigcirc nanofocus tube -> 0.3µm lateral resolution
- \bigcirc but defaults <1µm detection mainly depends on used detector contrast
- could not see any default on bumps

x360


Control?

the activities of the CTB Working Group on Hybrids, MCM,

- Infra Red Microscopy (QUANTUM FOCUS)

 - good resolution
 - but bumps hidden by metallisations
 - some further possible tests :
 - Temperature pulse
 - Faster acquisition

Control?

Proposed Solution - Sampling

- Widely used elsewhere but could it be applied to Space equipment fabrication ?
 - Application domains :
 - when control is destructive
 - when control takes too long
 - when control is too expensive
 - ⁴Goal
 - decide whether or not the lot is acceptable
 - not for quality estimation
 - ⊕ between 100% and 0% control
 - but with a good knowledge of error probability
 - several kinds of Acceptance Sampling Plans

Control ?

Conditions

- Process must already be qualified
- - different kind of samples (part to part variation),
 - operator (reproducibility)
 - and error inherent in measurement tool (repeatability)
- Which acceptance or rejection criteria ?
 - Can some defaults be accepted ? (depending on default nature or position)
 - Iook for norms depending on chosen control test.
- Which control for flip chip inspection ?
 - Cuts and SEM inspection (most precise)

 - Pull tests (maybe better results than shear tests but much more difficult to implement)

