Alcatel Alenia Space

3rd CTB WG Hybrids Technical Presentations Day ESTEC - Noordwijk - May 3rd, 2006

Microwave organic PCBs for space applications

All rights reserved © 2005, Alcatel Alenia Space

- organic versus non-organic
- materials and manufacturers: substrates, prepregs, resistors
- more on materials
- existing solutions for RF multilayer boards
- electrical results on RO4003 multilayers boards
- qualification of RF boards for FaFr antenna
- RF Printed Circuit Board: not so new
- questions and discussion

materials for RF substrates

inorganic substrates

- monocristal : quartz, sapphire
- ceramic : aluminum oxide (Al₂O₃) aluminum nitride (AlN)
- ✓ titanates : Mg, Ca, Zr, Sn, Ba...
- ✓ and, why not : diamond

organic substrates

- ✓ thermoplastic : Teflon® based
- thermoset : polyimide quartz-polyimide ceramic thermoset polymer composite

why organic materials ?

Page 4

weight reduction

- Iower density
- ✓ CTE compliant with light materials → less mechanical parts for the assembly

cost reduction

- ✓ cheaper material
- manufactured as printed circuit board
- easier to machine with specific shapes
- ✓ less brittle
- better electrical performances
 - ✓ larger substrates \rightarrow less interconnections
 - dielectric constant from 2.2

organic versus non-organic

Page 5

TG

°C 125

185

240

220

260

327

>250

>280

Material	Er	Tan δ 10 ⁻⁴	TCE ppm/°C	TC W.m ⁻¹ .K ⁻	Material	Er	Tan δ 10 ⁻⁴
Quartz-SiO ₂	3.75	1.5	0.5	1.5	Standard FR4	4.5	260
Cordierite	4.9	10	3.5	3	FR4 / BT	4	150
Steatite	6-6.5	6	7-9	2-4	Cyanate Ester	3.8	90
Forsierite	6-8	2-3	8.5-10	3	Modif. polyimide	4	150
BeO	6.6	2	7.5	260	Quartz polyimide	3.5	50
AIN	8.5	3-10	4.5-5	107	Pure PTFE	2.05	4
Al ₂ O ₃ 99.6%	9.2	2	7.2	33	PTFE based	2.2-10	10-35
Al ₂ O ₃ 96%	10.2	2	7.5	21	Thermoset	3.2-10	15-40
Mg, Za titanate	20	1.5	8	7			
Zr, Sn titanate	35	1.5	7.4	2			
Ba, Nd titanate	85	3	8	2			

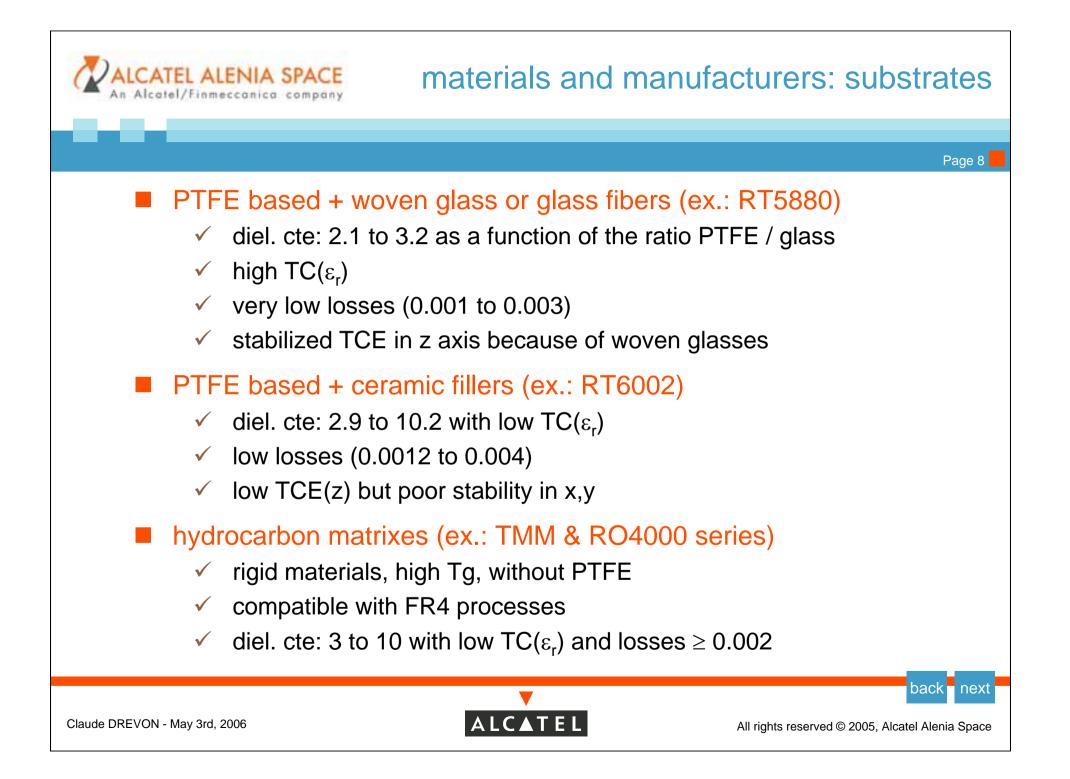
key points for RF organic PCB

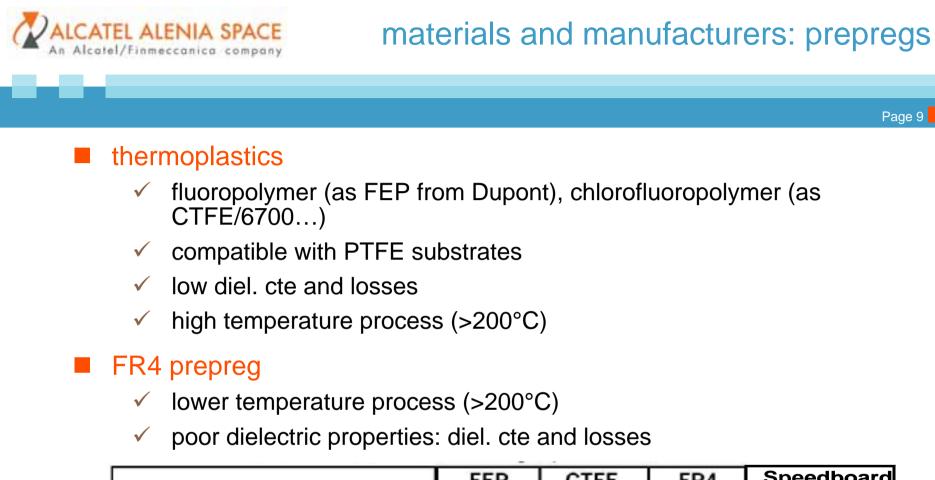
Page 6

electrical performances

- ✓ diel. cte and losses
 - different figures as a function of measurement method
 - to be checked for the real application
- temperature stability
 - ✓ diel. cte versus temperature: variation and linearity
- frequency stability
- coefficient of thermal expansion
 - range of temperature to be specified
 - linked to plated through-hole reliability

organic versus non-organic


- materials and manufacturers: substrates, prepregs, resistors
- more on materials
- existing solutions for RF multilayer boards
- electrical results on RO4003 multilayers boards
- qualification of RF boards for FaFr antenna
- RF Printed Circuit Board: not so new
- questions and discussion



back next

agenda

Page 7

	FEP	CTFE	FR4	Speedboard
Dielectric Constant	2.1	2.3	4.5	2.6
Loss Tangent	0.001	0.003	0.018	0.004
Lamination Temperature, °C	280	220	175	220
Lamination Time, hrs.	0.5	0.5	1	2

back next

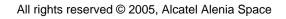
Page 9

materials and manufacturers: prepregs

Page 10

hydrocarbon matrixes based

- ✓ new offer compatible with hydrocarbon matrixes substrates
 → homogeneous multilayers
- ✓ high Tg thermoset (>250°C)
- ✓ bonding temperature \approx 175°C
 - \rightarrow i.e. lower then Tg : easier to manufacture sequential boards
- good compromise between process capabilities / electrical performances


materials and manufacturers: resistors

Page 11

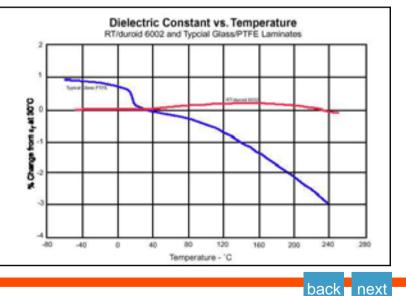
4 processes identified

- thin film resistor layer on copper: Ohmega-Ply, Gould, Shipley
- screen printed pastes: Inboard, Asahi, Electra and Dupont
- chemical additive deposition: MacDermid
- ✓ resistor chips

- organic versus non-organic
- materials and manufacturers: substrates, prepregs, resistors

more on materials

- existing solutions for RF multilayer boards
- electrical results on RO4003 multilayers boards
- qualification of RF boards for FaFr antenna
- RF Printed Circuit Board: not so new
- questions and discussion



Page 13

from Rogers

- PTFE based with ceramic fillers
 - duroid RT6002 as the reference for electrical properties quite no variation of diel. cte in temperature very low CTE on Z axis
 - RO 3003 as the "low cost" version of RT6000 serie as an associated prepreg (3001) with T_{PRESS} = 220°C seems difficult to process

	RO3003	RT 6002
ε _r (@ 10 GHz)	3.00 ±0.04	2.94 ±0.04
Tan δ (@ 10 GHz)	0.0013	0.0012
ΤC(ε_r) , ppm/°C	+13	+12
CTE, ppm/°C X, Y, Z	17, 17, 24	16, 16, 24
Abs. H ₂ O %	< 0.1	0.1
UL 94V0	Yes	Yes

Page 14

from Rogers

- ✓ thermoset (without PTFE)
 - TMM: on the market since beginning 90s breakable and not available in thin layer
 - RO 4000 series high Tg : 280°C available prepregs: RO4403 or RO4450 : T_{press} = 170°C

✓ PTFE versus non PTFE

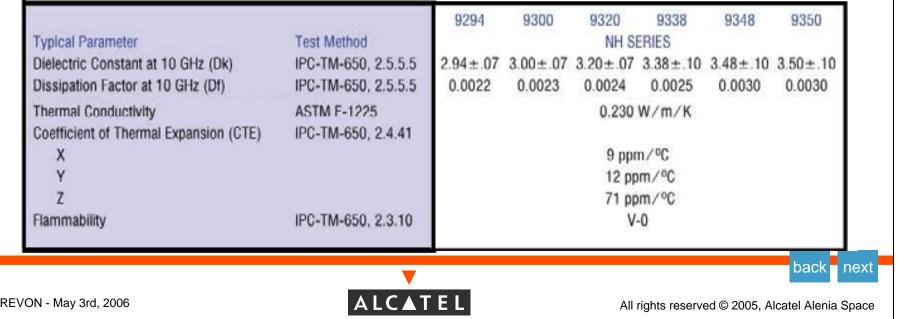
	4003	RT 6002	4403	4450	Speedboard
ε _r (@ 10 GHz)	3.38 ±0.05	2.94 ±0.04	3.17 ±0.05	3.54 ±0.05	2.6
Tan δ (@ 10 GHz)	0.0027	0.0012	0.005	0.004	0.004
ΤC(ε_r), ppm/°C	+40	+12			
CTE , ppm/°C X, Y, Z	11, 14, 46	16, 16, 24	16, 19, 80	19, 17, 60	56
Peel Strength	5	8.9	NA	NA	NA
Abs. H ₂ O %	0.04	0.1	0.05	0.05	0.02-0.04
UL 94V0	No	Yes	No	Yes	Yes

Page 15

from Arlon

- ✓ PTFE based
 - CLTE : PTFE based with ceramic filler and woven glass competitor to RT6002 available with Omega-Ply copper associated preg CLTE-P : T_{PRESS} 280°C !
- ✓ thermoset
 - 25N : competitor to RO4003 with same resin and different fillers associated preg with T_{PRESS} @ 170°C

	CLTE	RT 6002	25N	4003
ε _r (@ 10 GHz)	2.94	2.94 ±0.04	3.38 ±0.06	3.38 ±0.05
Tan δ (@ 10 GHz)	0.0025	0.0012	0.0025	0.0027
ΤC(ε_r) , ppm/°C		+12	-87	+ 40
CTE, ppm/°C X, Y, Z	10, 12, 35	16, 16, 24	15, 15, 52	11, 14, 46
Abs. H ₂ O %	0.04	0.1	0.09	0.04
UL 94V0	Yes	Yes	No	No



Page 16

from Neltec

- ✓ series N9000 for high frequency application
 - PTFE + woven glass + ceramic fillers to adjust the diel. cte around 3
 - high TCE in z > 70 ppm/°C
- new material: N9000-13 RF with PTFE and epoxy \checkmark
 - $\epsilon_r = 3$, tan $\delta = 0.004$ @10GHz, CTE = 67 ppm/°C in Z
 - manufacturing process as for PTFE

Page 17

from Taconic

- less RF products available in Europe
- ✓ only based on PTFE with very high CTE in X axis

	TLY (also: 605)	TLX / TLT (also: 601, 602)	TLE-95	TLC	RF-30	RF-35 / RF-35P	RF-60	CER-10
DK @ 10 GHz	2.17-2.33 (++ 0.02)	2.40-2.60 (+-0.04)	2.95 (+/- 0.05)	2.70, 3.00, 3.20 (+/- 0.05)	3.0 (+/- 0,1)	3.50 (+/- 0.1)	6.15 (++-0.25)	10.0 (+-0.5)
Df @ 10 GHz	0.0009	0.0019 (TLT: 0.006 @ 1 MHz)	0.0028	0.0029	0.0014 (@ 1.9 GHz)	0.0025 (0.0018 @ 1.9 GHz) (RF-35P: 0.0033 @ 10 GHz)	0.0028	0.0035
Peel Strength (1 oz ED copper)	12 lbs/in	12 lbs/in	12 lbs/in	12 lbs/in	10-12 lbs/in	10 lbs/in	8 Ibs/in	8 lbs/in
Moisture Absorption	< 0.02 %	< 0.02 %	< 0.02 %	< 0.02 %	< 0.02 %	< 0.02 %	< 0.02 %	0.02 %
CTE in Z axis (linear to - 350 °C)	280 ppm/*C	130-145 ppm/*C	70 ppm/*C	70 ppm/°C	125 ppm/*C	64 ppm/*C (RF-35P: 110)	75 ppm/*C	46 ppm/*C
CTE in X/Y axis	20 ppm / °C	9-12 ppm/*C	9-12 ppm/°C	9-12 ppm/°C	11-21 ppm/*C	19-24 ppm/"C	11-13 ppm/°C	13-15 ppm/*C
UL Rating TIR	V-0 105°C	V-0 105	V-0 105	V-0 105	V-0	V-0 105	V-0	V-0

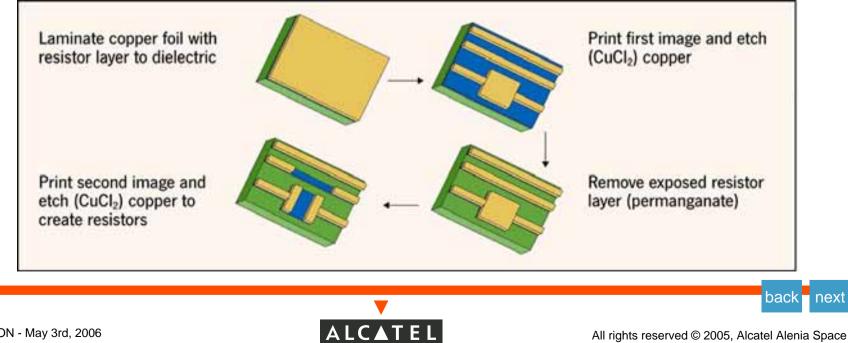
more on materials: prepregs

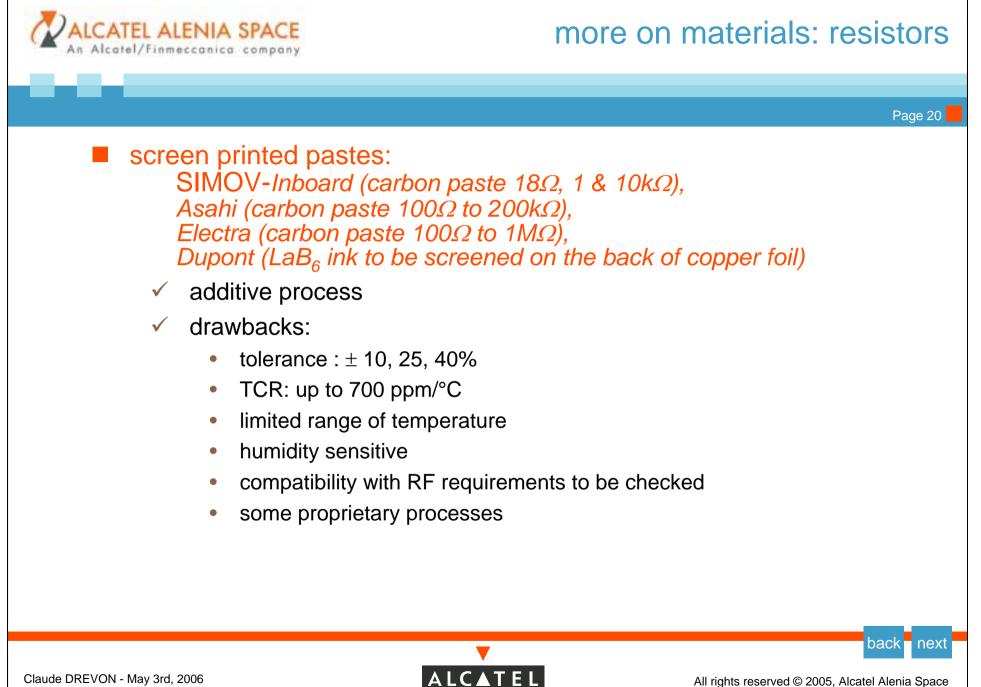
Page 18

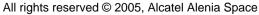
from Gore

- ✓ speedboard
 - expensed PTFE with cyanate ester resin
 - thickness after pressing : 2 mils (50 μm)
 - T_{PRESS} : 180 220°C
 - but not as good as RT6002 for RF performances

	Speedboard		
ε _r (@ 10 GHz)	2.6		
Tan δ (@ 10 GHz)	0.004		
CTE, ppm/°C X, Y, Z	56		
Tg (°C)	220		
Abs. H ₂ O %	0.02-0.04		
UL 94V0	Yes		

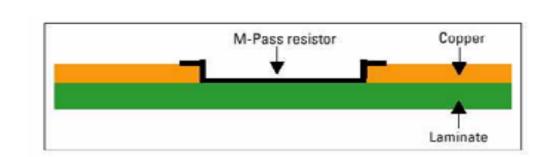

from other source : available with the substrate

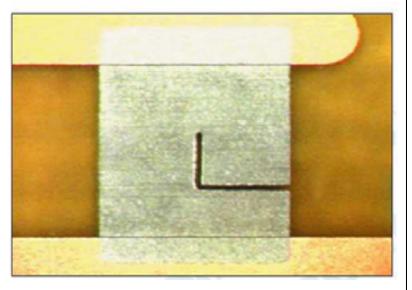




more on materials: resistors

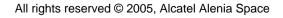
- thin film resistor layer on copper: Ohmega-Ply (electrodeposed NiP), Gould (NiCr or NiCrAlSi), Shipley (CVD doped Pt with high resistivity – about 1000 Ω /sq)
 - could be laminated onto the substrate
 - subtractive process with 2 to 3 steps \checkmark
 - accuracy ± 5 to 10% at least \checkmark

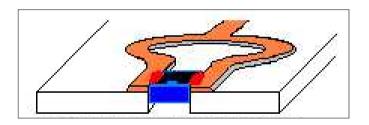


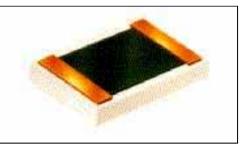

more on materials: resistors

Page 21

chemical additive deposition: MacDermid


- ✓ additive process
- ✓ chemical deposition of NiP layer
- ✓ 25 to 100 Ω /sq with tolerance ≈ 10 to 15%
- ✓ compatible with laser trimming

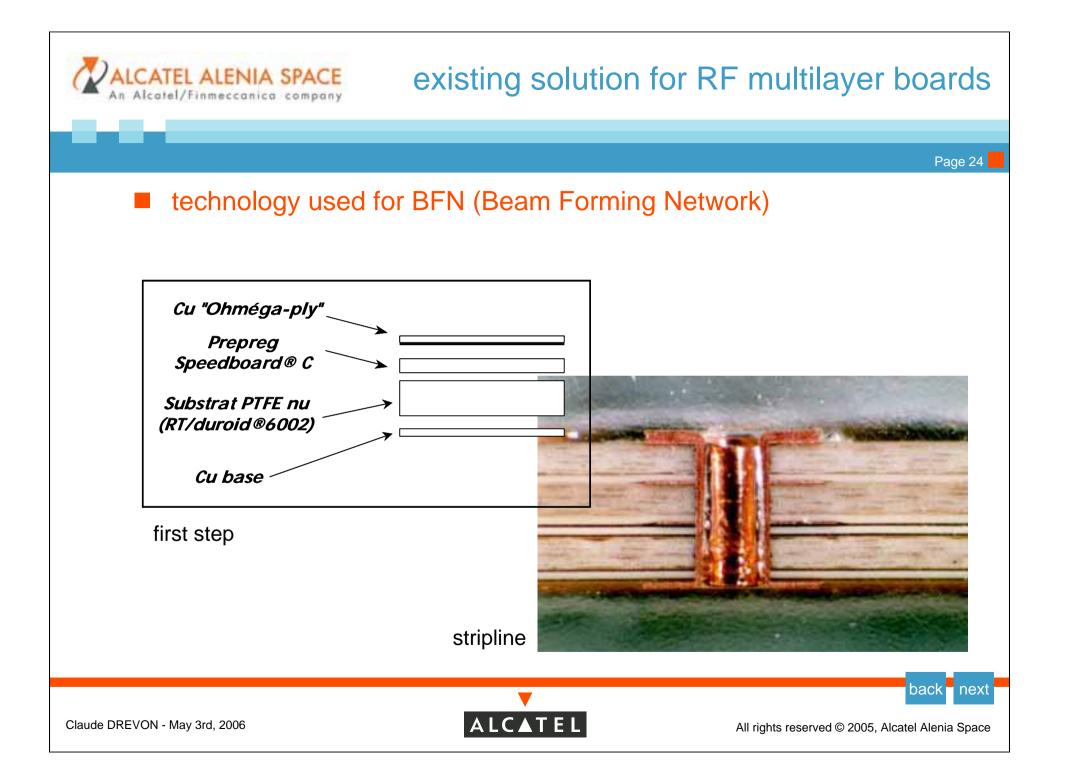



more on materials: resistors

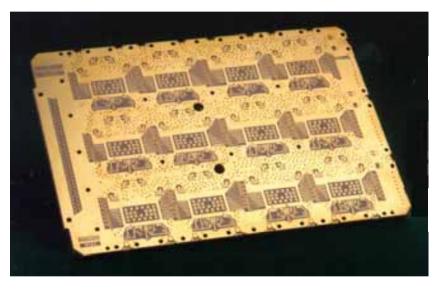
Page 22

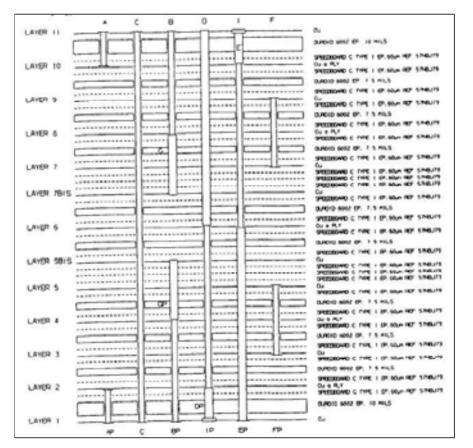
resistor chips

- chip added in the thickness of the board (with relative thicknesses to manage)
- ✓ tolerance on the chip : up to 1%
- compatible with process for multilayer boards assembly at temperature of 220°C



- organic versus non-organic
- materials and manufacturers: substrates, prepregs, resistors
- more on materials
- existing solutions for RF multilayer boards
- electrical results on RO4003 multilayers boards
- qualification of RF boards for FaFr antenna
- RF Printed Circuit Board: not so new
- questions and discussion




existing solution for RF multilayer boards

Page 25

BFN for Stentor

- operating frequency : 5-15 GHz
- 265 x 165 mm
- up to 12 layers
- about 120 embedded resistors
- high reliability for space environment

existing solution for RF multilayer boards

limits of the existing process

/Finmeccanica con

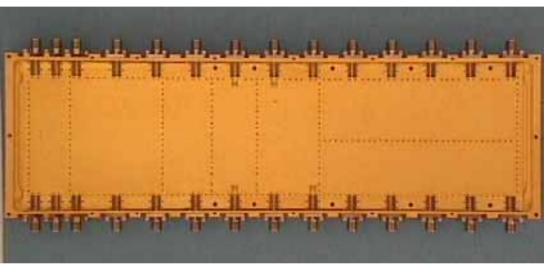
- ✓ cost of raw materials
- ✓ mechanical stability of layers: unwoven PTFE substrate
- ✓ sequential board with complex assembly process
- ✓ cladded Ohméga-Ply non available for small quantities
- ✓ higher frequencies to be planned

Thermoplastics (PTFE)	Thermosets
🙂 low losses	 good thermo-mechanical stability "FR4-like" manufacturing
 8 poor thermo-mechanical stability 8 prepreg with high bonding temperature 	 processes bomogeneous associated prepreg with low bonding temperature low cost
Require specific manufacturing processes	8 higher losses than thermoplastics

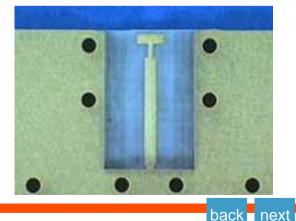
back next

Page 26

- organic versus non-organic
- materials and manufacturers: substrates, prepregs, resistors
- more on materials
- existing solutions for RF multilayer boards
- electrical results on RO4003 multilayers boards
- qualification of RF boards for FaFr antenna
- RF Printed Circuit Board: not so new
- questions and discussion



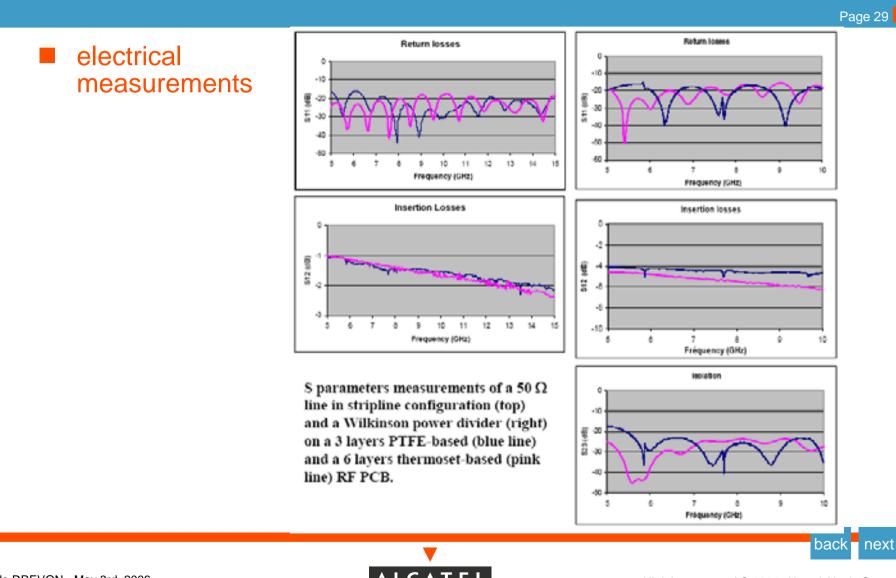
thermoset multilayer boards


Page 28

6 layers boards

RF interconnections

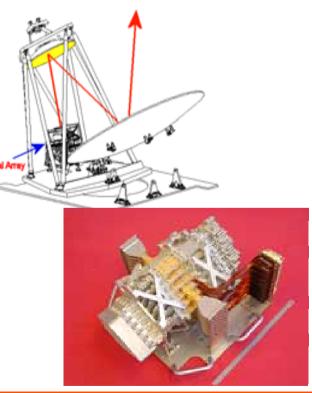
- plated through holes and laser microvias for inner connections
- RF openings for external interconnections
 - good reproducibility
 - mechanically and laser machined with tight tolerances at the PCB shop



thermoset multilayer boards

Page 29

- organic versus non-organic
- materials and manufacturers: substrates, prepregs, resistors
- more on materials
- existing solutions for RF multilayer boards
- electrical results on RO4003 multilayers boards
- qualification of RF boards for FaFr antenna
- RF Printed Circuit Board: not so new
- questions and discussion



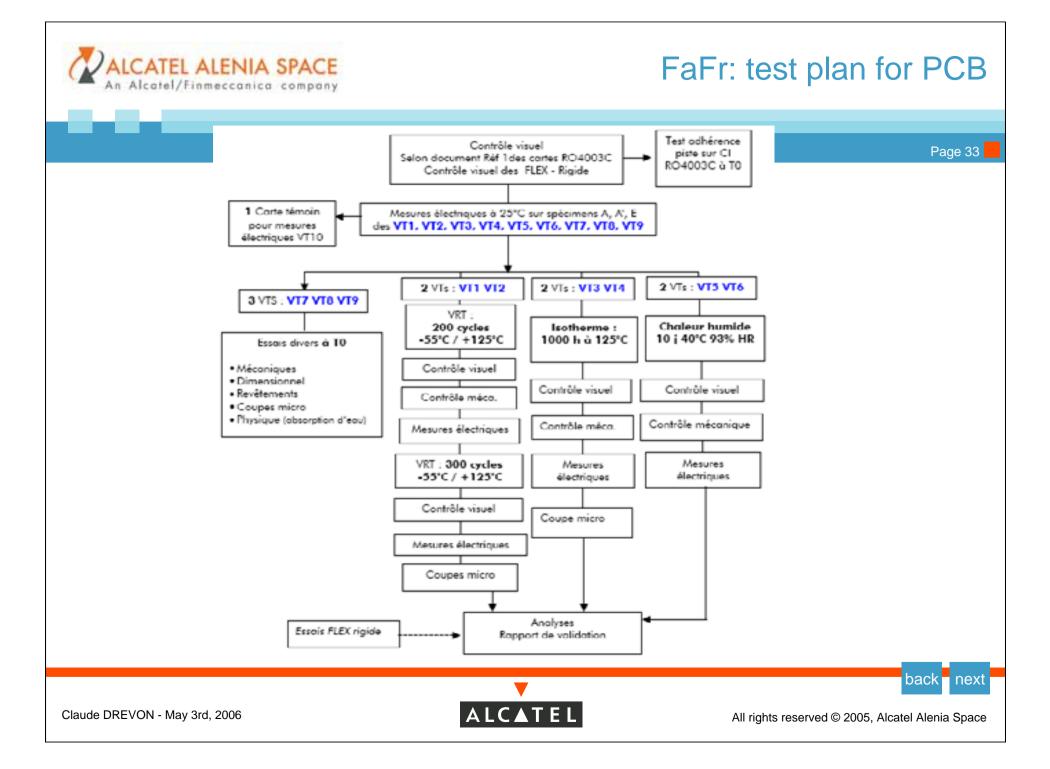
double sided board

Page 31

needs for FaFr antenna (Focal Array Fed Reflector)

- ✓ 30 GHz LNA compliant with antenna pitch
- Iow volume, low weight

 \checkmark

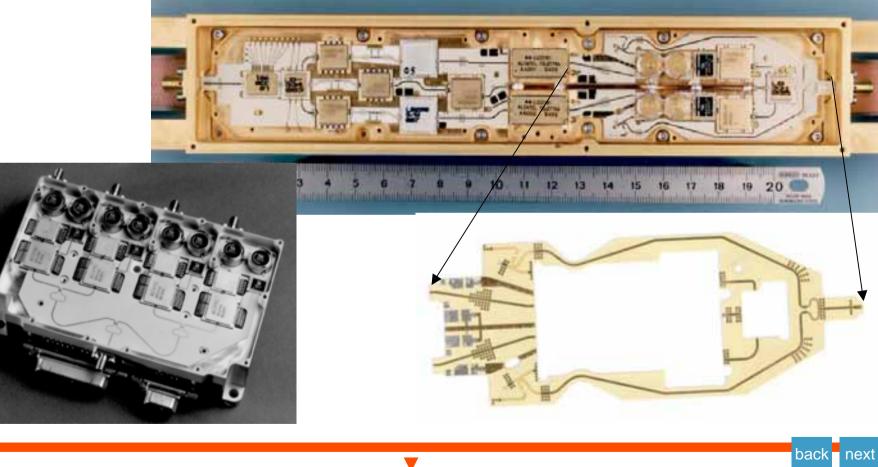

...

FaFr: qualification model

main characteristics

- ✓ substrate RO4003, double sided, to be bonded on half aluminum body
- compatible with fine pitch and high accuracy lines
- ✓ compatible with gluing of MMICs and wire bonding
- ✓ without embedded resistors
- ✓ tight accuracy on mechanical shape, holes for location

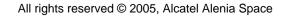
- organic versus non-organic
- materials and manufacturers: substrates, prepregs, resistors
- more on materials
- existing solutions for RF multilayer boards
- electrical results on RO4003 multilayers boards
- qualification of RF boards for FaFr antenna
- RF Printed Circuit Board: not so new
- questions and discussion



organic RF PCB: not so new

Page 35

■ In the 90s... TMM10i as double sided RF boards


thanks

Page 36

- to the Packaging Interconnection Group :
 - ✓ Chloé Schaffauser
 - ✓ Philippe Monfraix
 - ✓ Mathieu Paillard
 - ✓ Olivier Vendier
 - Laurent Garcia
- to agencies : CNES, ESA

to EC

Page 37

