

Diode-pumped Vertical-External-Cavity Surface-Emitting Laser (VECSEL) for atomic inertial sensors

B. Cocquelin, G. Lucas-Leclin and P. Georges

Laboratoire Charles Fabry de l'Institut d'Optique, Orsay, France

I. Sagnes

Laboratoire de Photonique et de Nanostructures, Marcoussis, France

A. Garnache

Centre d'Électronique et de Micro Optoélectronique, Montpellier, France

Equipe Lasers Solides et Applications

Laser Diodes in Space - CNES CCT 2006 - Toulouse

- Laser diodes in inertial atomic sensors
- Principle of VECSEL's
- Our technological choices
- Experimental setup and results
- Prospects

- Microwave interrogation
- **Detection** : $\Delta v < 500 \text{ kHz}$

High power and narrow linewidth sources ? To achieve more compact and simple optical benches

Anti-Helmholtz Coils

Laser Diodes in Space - CNES CCT 2006 - Toulouse

 Trapped cold atoms

Scheme of an atomic clock (Cs λ =852 nm)

Diode-Pumped VECSEL

VECSEL = Vertical-External-Cavity Surface-Emitting Laser

Kuznetsov : >0.5-W Diode-Pumped VECSEL with circular TEM₀₀ beam, J. Sel. Top. in Quantum Electronics, Vol.5, No 3 May 99

• External cavity : high power + good beam quality

choice of the beam waist - pump radius / high damage threshold

- Design semiconductor structure : diode pumping / choice of the wavelength
- State of the art: 8-W CW VECSEL @1000nm (Lutgen et al., APL, Vol.85,N.21, May 2003) 0.5-W CW at 850 nm (Hastie et al., IEEE PTL Vol.15,No7, July 2003) Single-frequency around 870 nm (Holm et al.,IEEE PTL Vol.11,No 2, Dec. 1999)

Semiconductor Structure = Key component of the laser

• Active layers :

Institut d'Optique

- Absorption in the barriers , gain region : QW
- Materials : AlGaInP [550 700 nm] AlGaAs [750 870 nm] InGaAsP [0.9 1.6 μm]
- Short absorption depth (few microns), broad spectral absorption
 - \Rightarrow high power multimode diode pumping
- DBR Mirror : high reflectivity
- Substrate : thermal management

Our Design at 852 nm

• Cavity length : ~ 25 cm

Laser Diodes in Space – CNES CCT 2006 - Toulouse

Free-running operation

Conclusion & Prospects

- We achieved :
 - 15 mW CW free-running operation (100 mW / 150 mA pump current);
 - 8 mW CW @852 nm;
 - single transverse mode and single frequency source.
- Prospects :
 - Development of a monolithic and compact source for evaluation at the SYRTE
 - Power scalability
 - Thermal management
- Acknowledgement :
 - B. Cocquelin PhD funding by CNRS/CNES
 - Financial support from the DGA under contract « POSEIDA » nº0534004

