

Laser Diodes in Space: Needs Expression CNES DCT/SI/OP L. Mondin

Linda.Mondin@cnes.fr

OUTLINE

Lasers in space technologies
Preferred Technologies

Laser diodes

- Applications
- Reliability
- Environment
 - Thermal
 - Vacuum
 - Radiation
 - Vibration and others

Conclusions and Outlook

LASERS IN SPACE TECHNOLOGIES I :

OUTLINE 1

■ Gas lasers (Helium-Neon, Argon...)

• Cannot be adapted to space

Dye lasers (e.g. Rhodamine 6G)

• Cannot be adapted to space

Semiconductor lasers (DIODES: DFB, DBR...)

- Advantages
 - Spatialisation, operation, lifetime, emitted power
- Drawbacks
 - Divergence, beam quality, frequency and intensity noise DIODE PUMPED !

Solid state lasers and fibre lasers -

Advantages

- Spatialisation, emitted power, beam quality, narrow linewidth, spectral accordability, lifetime (=diodes), use of telecom qualified components
- Drawbacks
 - Electrical power budget, size, environment

Workshop : Laser Diodes in Space

LASERS IN SPACE TECHNOLOGIES II: Materials: SOLID STATE LASERS 1: DIODES

- GaAs, InGaAs, InP, InGaAsP etc...
- Characteristics:
 - Reduced size (L~1 to 10 cm)
 - Direct electrical pumping: power budget required is reduced
 - Large spectral domain can be reached:
 - 0.75 $\leq \lambda \leq$ 2.3 μm depending on the choice of elements, can be extended frequency doubling, mixing...
 - Direct high frequency (GHz) modulation possible
 - Electro-optical efficiency <50%
- Performances:
 - Power Output (CW) :
 - Single Mode (1W), Multimode (bars<10W, stacks<100W) typically
 - Divergence :
 - 10°- 40° typically (high!)
 - Linewidth :

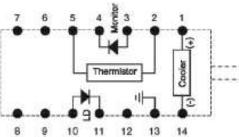
• Spectrally large >MHz typically; can be as narrow as 100kHz (DFB+ proper power supply) Workshop : Laser Diodes in Space Toulouse May 11-12

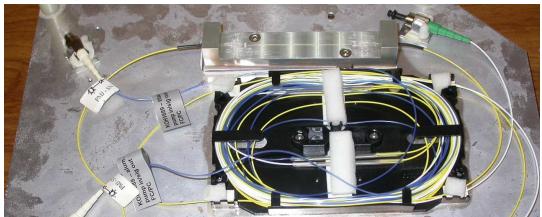
LASERS IN SPACE TECHNOLOGIES III:

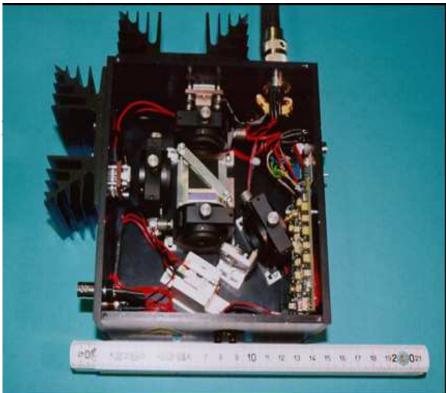
Materials:

SOLID STATE LASERS 3

- Doped Crystals (YAG, YVO₄, YLF...), Glass (silica, fluoride glass), Fibres
- Dopant is typically Rare Earth (Yb, Er, Nd, Ho etc...)
- Characteristics:
 - Size (L> 10 cm typically)
 - Diode pumped (power budget increased)
 - Large spectral domain can be reached:
 - λ ~0.2 to 3µm can be extended (frequency doubling, mixing)
 - Frequency modulation possible
 - Electro-optical efficiency <10% typically
- Performances:
 - Power Output (CW) :
 - Single Mode up to 50W
 - Energy in pulse (pulsed mode) :
 - A few µJ up to 10J typically
 - Divergence :
 - 10⁻³ rad typically
 - Linewidth :
 - Spectrally narrow <100kHz and as low as 100Hz @1s
 - Excellent beam quality


Workshop : Laser Diodes in Space


LASERS IN SPACE TECHNOLOGIES V:


Electrical Schematic (Package Viewed From Top)

Diode

SOLID STATE LASERS 5

Nd:YAG Laser LISA prototype (2000)

Fibre Laser (test model after thermal humidity) Workshop : Laser Diodes in Space Toulouse May 11-12

LASER TECHNOLOGIES VI : CONCLUSIONS

Lasers we can hope to qualify for space utilisation contain DIODES.

Many more applications than simple pumping of a solid state or fibre laser...

This component is of major interest!

Workshop : Laser Diodes in Space

OUTLINE

Lasers in space technology
Preferred Technologies

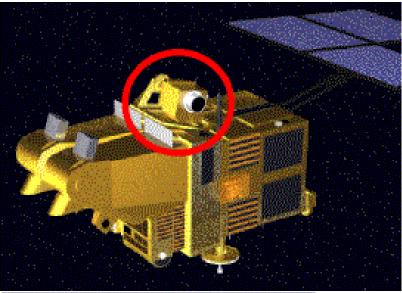
Laser diodes

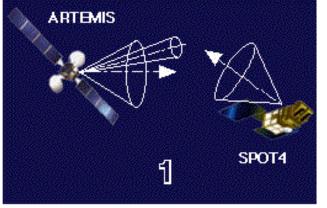
- Applications
- Reliability
- Environment
 - Thermal
 - Vacuum
 - Radiation
 - Vibration and others

Conclusions and Outlook

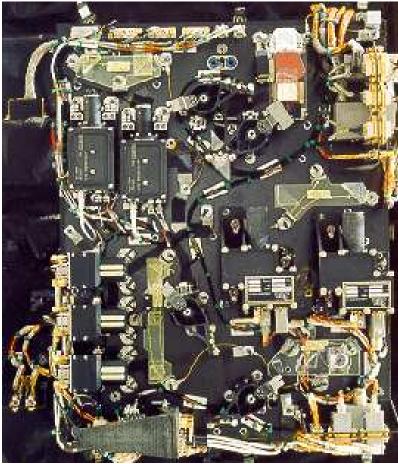
LASER DIODES: APPLICATIONS 1

INFORMATION RELAY


- Optical Telecommunications (inter satellite) : Silex ...
- Optical telecommunications (intra satellite) : SMOS, ISL, R&D optical interconnects...
- Time transfer (laser links) : T2L2
- Characteristics
 - Large distances, small target
- Requirements
 - High power (CW) or energy (pulsed)
 - High debit (Gbit/s)
 - Small size and power input


Space adapted solution

 VCSEL, diodes, fibre (intra), fibre (up to optical bench) and free space propagation (inter)



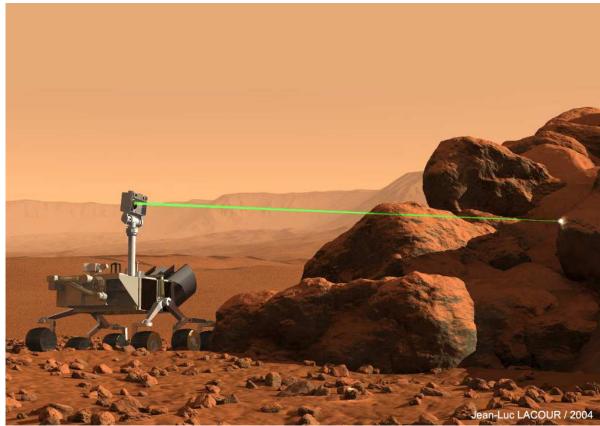
LASER DIODES: APPLICATIONS IMAGES 1 Silex

Silex LEO/GEO laser link

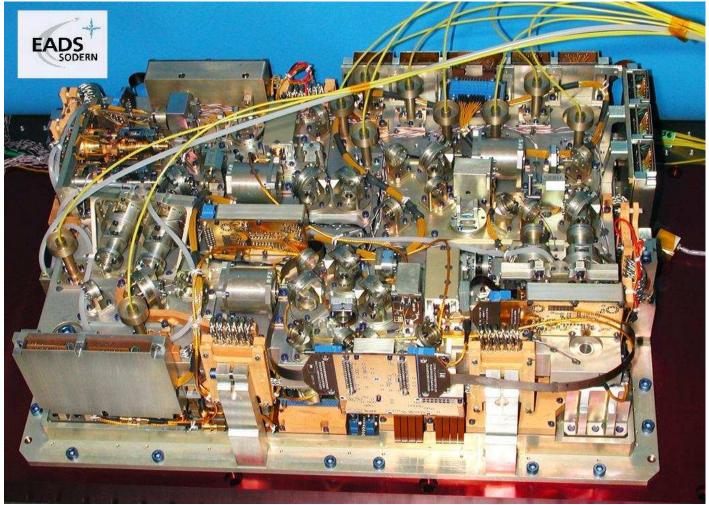
Optical bench Silex ASTRIUM Toulouse May 11-12

Workshop : Laser Diodes in Space

LASER DIODES: APPLICATIONS 2


- MATTER LIGHT INTERACTION:
 - Atmospheric sounding LIDARS: ALADIN, ATLID, MICROMEGA (EXOMARS), WALES ...
 - Cold atoms : PHARAO (clocks), ICE ...
 - Spectroscopy and in situ analysis of planetary matter: CHEMCAM (LIBS + autofocus) ...
 - Pyrotechnics : DEMETER
 - > Characteristics
 - Interaction between light and matter, precise wavelength
 - Requirements
 - Precision
 - Stability
 - Accordability
 - Linewidth
 - Power (Output/Stability)
 - Space adapted solution
 - DFB/DBR diodes, Extended Cavity Lasers, fibre lasers, solid state lasers

LASER DIODES: APPLICATIONS IMAGES 2 CHEMCAM


Auto-focusing system:

- Laser diode @780-850nm
- Wavelength stability:
 - Over a few seconds
- Temperature range:
 - -30/+30°C best case scenario
 - -55/+70°C worst case scenario
 - Diode must be on in this temperature range!
- Power:
 - Always > 50mW
- Mean Time To Failure:
 - >200000h

LASER DIODES: APPLICATIONS IMAGES 3 PHARAO

Workshop : Laser Diodes in Space

<u>ICE</u>

LASER DIODES: APPLICATIONS 3

PLANETARY EXPLORATION AND MONITORING

- Geodesy : Post-Grace
- Altimetry : BELA
- Magnetometers : SWARM
- Characteristics
 - Large distances, small target, interaction light/matter

Requirements

- High/Stable power (CW) or energy (pulsed)
- Precision
- Stability
- Linewidth

Space adapted solution

• DFB/DBR diodes, fibre lasers, solid state lasers

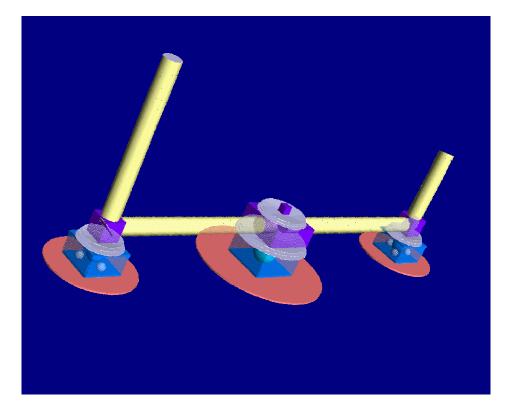
LASER DIODES: APPLICATIONS IMAGES 5 SWARM

LASER DIODES: APPLICATIONS 4

FORMATION FLIGHTS and METROLOGY

- Sensors : position\speed PROBA3, ATV, PEGASE, SIMBOLX, DARWIN, acceleration\angular velocity PLEIADES (fibre-gyro)...
- Gravitational Waves Detectors : LISA
- Characteristics
 - Metrological precision in the measurement of the distance, displacement, acceleration, angular velocity, etc...

Requirements

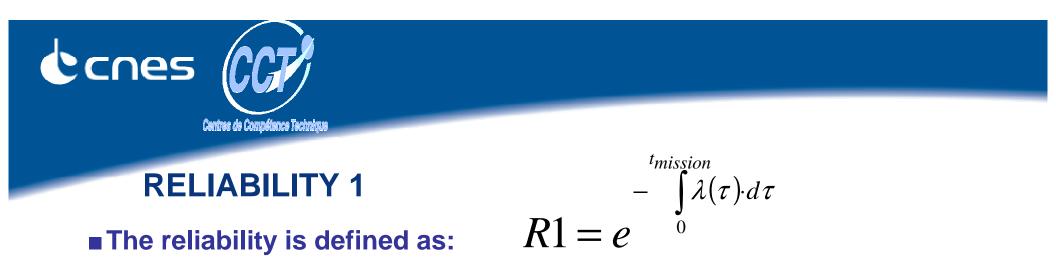

- Medium power
- Very narrow linewidth (coherence length)
- Accordability
- Stability
- Precision
- Single mode (long. and trans.)

Space adapted solution

• Diodes (DFB/DBR), fibre lasers, solid state lasers

LASER DIODES: APPLICATIONS IMAGES 6 PEGASE/MOUSE

Workshop : Laser Diodes in Space


OUTLINE

Lasers in space technology
Preferred Technologies

Laser diodes

- Applications
- Reliability
- Environment
 - Thermal
 - Vacuum
 - Radiation
 - Vibration and others

Conclusions and Outlook

The reliability for three independent lasers is: $R3 = R1^{3} \qquad \underline{t_{mission}} \\ R1 = e^{-\lambda \cdot t_{mission}} = e^{-MTTF}$

If we consider one redundancy for each laser we get instead:

• Hot
$$R3r1 = \left[1 - (1 - R1)^2\right]^3$$

• Cold $R3r1' = \left[R1 \cdot \left(11 - 10 \cdot R1^{0.1}\right)\right]^3$

RELIABILITY 2 : MEAN TIME TO FAILURE

Mean Time To Failure is a function of:

$MTTF = \frac{2 \cdot nt}{\chi^2 (CL}; 2 \cdot (r+1))}$ • nt number of working hours without failure

- A_f acceleration factor depending on:
 - Emitted power and
 - Working temperature
 - Humidity...
- CL confidence level
- r number of rejects during essays

RELIABILITY 3 : ACCELERATED TESTS

- Tests can be conduced at higher temperature (relative humidity etc) to accelerate the degradation of the components
- For a temperature increase the Acceleration Factor is given by Arrhenius' law:

$$A_{f} = \exp\left[\frac{E_{a}}{k}\left(\frac{1}{T_{flight}} - \frac{1}{T_{test}}\right)\right]$$

Activation Energy typically between 0.3 and 1.2eV

For laser power Derating we have instead:

$$D_{power} = \left(\frac{P_{test}}{P_{flight}}\right)^n$$

Workshop : Laser Diodes in Space

OUTLINE

Lasers in space technology
Preferred Technologies

Laser diodes

- Applications
- Reliability
- Environment
 - Thermal
 - Vacuum / Contamination
 - Radiation
 - Vibration and others

Conclusions and Outlook

ENVIRONMENT: THERMAL

- **Satellite with thermal control OFF (GEO satellite) :**
 - -55/+125°C for standard electrical equipment, telecom, in survival mode
 - -40/+50°C for scientific payload, in survival mode
 - Diode is OFF
- Satellite with thermal control ON :
 - -40/+85°C for standard electrical equipment
 - 10 to 30°C for scientific payload
 - temperature error of ± 5°C
 - temperature stability of ± 2°C
 - Diode is ON
- Thermal environment for planetary exploration :
 - -30/+30°C Mars (CHEMCAM)
 - Diode is ON
 - Wavelength and power output stability!
- \rightarrow Thermal cycling ON ?

ENVIRONMENT: VACUUM / CONTAMINATION

- Failure mode due to extraneous matter deposition on diode facets a possibility
- \rightarrow Control of pollution in the proximity of the laser diode necessary
- \rightarrow No/reduced outgassing required
- **Cleaners** in particular can be a danger
- If the atmosphere inside the diode packaging is 'safe'
- → Low leak rate to keep required oxygen level inside the diode is a must, necessity of hermetically sealed packaging to be evaluated
- Heat evacuation can be a problem in vacuum
- For planet exploration dust contamination must be taken into account:
- \rightarrow Hermetically sealed seems safer!

ENVIRONMENT: RADIATION

Radiation dose depends on:

- Orbit
- Mission duration
- Shielding
- Solar cycle
- Material considered

Radiation types:

- Ionising dose (gamma radiation)
- Protons
- Electrons
- Neutrons
- Heavy lons...

- Values for SWARM (e.g.)
 - + 450 530km
 - + 4 years
 - >3mm and <100mm</p>
 - Launch 2010
 - GaAs (worst case scenario, Si and SiO₂ considered)
 - Total ionising dose : 3.9krad
 - Proton flux :
 - trapped protons (50MeV equivalent) 22.5 cm⁻²
 - solar protons (50MeV equivalent) 1.07E+10 cm⁻²

ENVIRONMENT: VIBRATION and others...

- Depends on:
 - Launcher type
 - Position of payload in launcher
 - Satellite and payload mass distribution
 - Micro-vibrations
 - Landing (planetary exploration)
 - Vibration in planetary environment

OTHERS

- EMC
- Molecular oxygen...

Diodes

- If pigtailed can suffer power loss through misalignment
- Misalignment and back-reflections
- EMC sensitive
- If packaging is hermetically sealed molecular oxygen is not a problem

OUTLINE

Lasers in space technology
Preferred Technologies

Laser diodes Applications

- Reliability
- Environment
 - Thermal
 - Vacuum
 - Radiation
 - Vibration and others

Conclusions and Outlook

CONCLUSIONS

- Diodes are the cornerstone component for laser space applications
- Requirements synthesis:
 - Pump current modulation
 - Spectral purity
 - Low Relative Intensity Noise
 - Beam quality
 - Divergence
 - Linewidth (narrow/adapted to application)
 - Intrinsic frequency stability
 - Space compatible
 - Lifetime (10⁵ h)
 - Good electro-optic conversion
 - Reliable cooling system or no cooling
 - Easy to integrate
 - Reduced size, mass and energetic budget

We might be asking a bit too much... BUT

OUTLOOK

- Laser diodes are increasingly used in space experiments
- The number of active optical instruments for sensors, launchers and satellites is rapidly growing!
- European and French space experiments with diodes onboard:
 - Currently in orbit: SILEX, DEMETER (satellites), SDLA-LAMA (ballon)...
 - Soon to be launched: IASI, PLEIADES(gyrometres), ALADIN, FIRST PLANCK, PROBA ...
 - In preparation: SMOS, GAIA, BEPICOLOMBO, CHEMCAM, SWARM, PHARAO, LISA Pathfinder...
 - Pre-study: Clocks for Galileo, optic clocks, cold atoms gyrometres, formation flight sensors...

LASER DIODE LINEWIDTH AS A FUNCTION OF POWER SUPPLY Power Linewid

Source linewidth CSO diode on ILX power supply red and on CSO with capacitor blue 0.9 0.8 0.7 linearised power [adim] 0.6 0.5 0.4 0.3 0.2 0.1 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 frequency [kHz]

Diode	Power Supply	Linewidt [kHz]
CQF938/ 400 #500138	ILX- LDX3620	328±1.8
CQF938/ 400 #500138	ILX- LDX3620+ LNF	321±3.4
CQF938/ 400 #500138	ILX- LDX3525+ LNF	435±3.1
CQF938/ 400 #500138	ILX- LDX3525	2330±10

Workshop : Laser Diodes in Space

<u>back</u>

30

Workshop : Laser Diodes in Space