

High Power Laser Diodes

WORKSHOP Laser Diodes in Space

DFB Laser Diodes at 852 nm matching Cesium absorption and their use as components for atomic clocks in space.

<u>Thomas Laurent</u>, Jörg Wiedmann

May 11th, 2006

TABLE OF CONTENTS

- 1. Introduction
 Company / Portfolio
- 2. DFB Lasers

 Manufacturing and Operation
- 3. DFB Lasers for Cs Absorption Spectral Requirements
- 4. Qualification
 Lifetime Test Results
- **5.** System Performance Requirements and Expectations

INTRODUCTION

eagleyard

We focus on power.

Company

Products: High Power Laser Diodes

(Single Emitter)

Applications: Life Science, Material Processing,

Spectroscopy, Metrology,

Printing (CTP), Data Storage,

Laser Display

• Founded: 2002

Origin: spin-off from the

Ferdinand-Braun-Institute

Location: Berlin-Adlershof ("[eagle]-[yard]")

• Employees: 16

• Sales: 50% Germany

35% US/North America

10% SEA

"eagleyard Photonics closes the gap between leading research results and volume production." (mission statement)

INTRODUCTION

eagleyard

We focus on power.

Portfolio

Products: All based on GaAs semiconductor

(650 to 1120 nm)

Fundamental: Ridge Waveguide Laser

large wavelength variety

up to 300 mW

Highest Power: Broad Area Laser

980 nm: 12 W @ 200 μm

808 nm: 7 W @ 200 μm

Beam Quality: Tapered Laser/Amplifier

Best M² values

up to 2 W (5 W)

Precision: DFB/DBR Laser

unique wavelength/linewidth

up to 400 mW @ 976 nm

DFB LASERS

eagleyard

We focus on power.

RW Laser

- Many Fabry-Perot modes allowed
- Single vs. Multimode

DFB/DBR Laser

- Integrated grating structure acting as frequency filter
- Purely Singlemode

DFB LASERS - MANUFACTURING

We focus on power.

- 1st Epitaxial Run
- Mask Process
- Edging
- 2nd Epitaxial Run
- Contacts
- Facet Coating
- Patented
 - Steps 4 and 6
 - eagleyard has exclusivity

DFB LASERS

We focus on power.

History

- Ferdinand-Braun-Institute
- collaboration with scientific and industrial partners

Current Portfolio

- 760, 763, 780, 784, **852**, 860, 923, 937, 976, 1060, 1063, 1080, 1083 nm
- either *eagleyard* or OEM

Roadmap

- 785, 795, 810, 855, 894, 935, 942 ...
- More features added on chip level
- 14 pin Butterfly Package with PM fiber

focu		

Recommended Operation Conditions							
	Symbol	Unit	min	typ	max		
Operational Temperature at case	T _{case}	°C	15	=	40		
Forward Current	le.	mΔ	220	_	230		

Characteristics at	lamb 25 C		
Parameter	Symbol	Unit	

Parameter	Symbol	Unit	min	typ	max	Measu
Center Wavelength	λ_{C}	nm	850	852	854	compa
Spectral Width (FWHM)	Δν	MHz		2	10	measu
Temperature Coefficient of Wavelength	dλ/dT	nm / K		0.06		
Output Power	Popt	mW	100	150		
Slope Efficiency	ηd	W/A	0.6	0.8	1	
Threshold Current	I _{th}	mA	60	70	90	
Operational Current @ 150 mW	lop	mA		230	250	
Cavity Length	Ĺ	μm		1500		
Divergence parallel (FWHM)	Θ_{Π}	٥	6	8	10	
Divergence perpendicular (FWHM)	Θ_{\perp}	٥	18	21	24	
Polarization				TE		Polariz
Spatial Mode (transversal)				TEM ₀₀		Funda
Spectral Mode (longitudinal)				Single Mod	e	

cor	npare images on page 3	
me	asured in homodyn-detected interferometric setup	
Pol	arization in parallel plane	
Fur	ndamental Mode	

- Spectral Requirements for Atomic Clocks
 - Cs D2 line at 852.014 nm vacuum (Cs D1 line at 894 nm)
 - Narrow Linewidth (~ 1 MHz)
 - Stabilized Wavelength
 - Moderate Powerlevel (~ 20 50 mW)
 - Long Lifetime
- Conventional optical-pumped Approach
 - Extended cavity setups
- DFB Design Approach
 - Small
 - No mechanics/alignment
 - Low weight

We focus on power.

- Power = 150 mW
- Threshold = 27 mW
- Slope = 0.9
- T = 25 °C

Spectrum

- Lambda = 852.13 nm
- Power = 150 mW
- T = 25 °C

• Where is the Cs?

- modifed test setup with double pass through Cs cell
- dips of sudden power drop indicating
 Cs absorption
- method is used for calibration of our equipment

We focus on power.

- Finding an operational window part I
 - Temperature Coefficient:
 - Current Coefficient:

0.06 nm/K

0.003 nm/mA

We focus on power

Finding an operational window – part II

We focus on power.

- Collecting data
 - Fully automated Test-Station measures 16 DUT simultaneously
 - Compatible to Lifetime-Test/ Burn-In Stations, no additional handling needed

We focus on power.

Determination of Linewidth

- Selfhomodyne interferometric setup*
- Linewidth is derived from a histogram of frequeny change
- Typical values:2 4 MHz

- *) T. Kinder, K.-D. Salewski, *Characterizing tuneable external cavity semiconductor lasers using a homodyne fibre interferometer,* International Journal for Light and Electron Optics, No. 3/2000.
- *) K. Okoshi, K. Kikuchi, A. Nakayama, *Novel Method for High Resolution Measurement of Laser Output Spectrum.* Vol. 16, No. 16, P. 630-631, July 1980.

QUALIFICATION

- eagleyard
- Spectral Requirements for Atomic Clocks
 - Cs D2 line at 852.014 nm vacuum (Cs D1 line at 894 nm)
 - Narrow Linewidth (~ 1 MHz)
 - Stabilized Wavelength
 - Moderate Powerlevel (~ 20 50 mW)
 - Long Lifetime
- Qualification Goal
 - Verify, that the DFB 852 satisfy these requirements with long lifetime at standard conditions
 - With more effort, they could likely meet the requirements for their use in space

QUALIFICATION

We focus on power.

1. Package Test

 SOT 9 mm housing (Temperature Cycle, Temperature Humidity, Vibration, Shock, Salt Mix, Solderability)

2. Accelerated Aging Test

- HTB Tests at 50 and 60 °C
- In SOT 9 mm and Chip-on-submount

3. Spectral properties

- Linewidth
- Spectral maps

QUALIFICATION - PACKAGE

3 pcs

Vibration

10 - 500 cycles

 5 m/s^2

Test

P, Leaktest

Impact Shock 3 shocks / s 150m/s², 11 ms

> Test P, Leaktest

> > Qualification Report

5 pcs

TH

2000 hrs

90°C / 90%

Test

P, Leaktest

We focus on power

5 pcs

Salt Mix

96 hrs

Visual

Inspection

5 pcs

Solderability

Visual

Inspection

CONTENT
INTRODUCTION
DFB LASERS
DFB FOR CS
QUALIFICATION
PERFORMANCE

5 pcs

TC

1200 cycles

-20°C / +100°C

Test

P, Leaktest

QUALIFICATION - PACKAGE

We focus on power.

Test	Status	Result	
ТС	completed	0 failures	passed
TH	completed	0 failures	passed
Vibration	completed	0 failures	passed
Mech. Shock	completed	0 failures	passed
Salt Mix	completed	0 failures	passed
Solder- ability	completed	0 failures	passed

We focus on power.

DFB Laser Diodes at 852 nm for atomic clocks in space | May 11th, 2006

PAGE | 20

eagleyard

We focus on power.

Stress conditions:

Samples:

Batch:

End of life criteria:

Defects:

Averaged extrapolated Lifetime at 60°C:

Estimated Lifetime at 30°C and 50 mW:

740 hrs, $T_{case} = 60^{\circ}C$, $P_{opt} = 150 \text{ mW (CW, cc)}$

10 parts, SOT

B0651-6-2/B0673-6-2

 $P_{opt} = 80\% (120 \text{ mW})$

2 degradation defects at 420 hrs and 490 hrs

1450 hrs

107,000 hrs (Acceleration Factor: AF = 74)

CONTENT
INTRODUCTION
DFB LASERS
DFB FOR CS
QUALIFICATION
PERFORMANCE

DFB Laser Diodes at 852 nm for atomic clocks in space | May 11th, 2006

eagleyard

We focus on power

Stress conditions:

Samples

Batch:

End of life criteria:

Defects:

3000 hrs, $T_{case} = 50$ °C, $P_{opt} = 150$ mW (CW , cc)

10 parts, SOT

B0651-6-2/B0673-6-2

 $P_{opt} = 80\% (120 \text{ mW})$

4 degradation defects at 1220, 1810, 2050, 2220 hrs

2 sudden failures at 2800, 2890 hrs

Averaged extrapolated Lifetime at 50°C: 3800 hrs

Estimated Lifetime at 30°C and 50 mW:

173,000 hrs (AF = 46)

eagleyard

We focus on power

Stress conditions:

Samples:

Batch:

End of life criteria:

Defects:

2220 hrs, $T_{case} = 50^{\circ}C$, $P_{opt} = 150 \text{ mW (CW , cc)}$

10 parts, SOT

B0651-6-2/B0673-6-2

 $P_{opt} = 80\% (120 \text{ mW})$

2 degradation defects at 1050, 1300 hrs

1 sudden failure at 1700 hrs

Averaged extrapolated Lifetime at 50°C: 3770 hrs

Estimated Lifetime at 30°C and 50 mW: 163,000 hrs (AF = 44)

CONTENT
INTRODUCTION
DFB LASERS
DFB FOR CS
QUALIFICATION

PERFORMANCE

DFB Laser Diodes at 852 nm for atomic clocks in space | May 11th, 2006

Stress conditions:

End of life criteria:

Batch:

Defects:

20

11 (13) parts*), SOT

B0808-6-1/B0832-6-1

 $P_{opt} = 80\% (80 \text{ mW})$

5 degradation defects at 940, 980, 1080, 1150, 1230 hrs

2450 hrs

Estimated Lifetime at 30°C and 50 mW: 36,000 hrs (AF = 15)

400

1350 hrs, $T_{case} = 50^{\circ}C$, $P_{opt} = 100 \text{ mW (CW , cc)}$

Averaged extrapolated Lifetime at 50°C:

Constant Current Control 1000 1200 600 800 1400

*) Two parts died accidentally during measurement (at 1180 hrs) and are therefore not used for evaluation.

duration t [hrs]

DFB Laser Diodes at 852 nm for atomic clocks in space | May 11th, 2006

© eagleyard Photonics, Berlin/Germany

200

PAGE | 24

CONTENT

INTRODUCTION

QUALIFICATION

PERFORMANCE

DFB LASERS DFB FOR CS

Stress conditions:

Batch:

Defects:

Averaged extrapolated Lifetime at 50°C:

Estimated Lifetime at 30°C and 50 mW:

1350 hrs, $T_{case} = 50^{\circ}C$, $P_{opt} = 100 \text{ mW (CW , cc)}$

7 parts, SOT

B0651-6-3/B0673-6-3

 $P_{opt} = 80\% (80 \text{ mW})$

3 degradation defects at 790, 900, 910 hrs

2290 hrs

36,000 hrs (AF = 16)

PAGE | 25

eagleyard

We focus on power

Stress conditions:

Samples

Batch:

End of Life criteria:

Defects:

Averaged extrapolated Lifetime at 50°C:

Estimated Lifetime at 30°C and 50 mW:

4500 hrs, $T_{case} = 50^{\circ}C$, $P_{opt} = 100 \text{ mW (CW , cp)}$

10 parts, AIN

B0808-6-1/B0832-6-1

 $I_{BOL} + 33 \text{ mA}$

0 degradation defects

12,600 hrs

179,000 hrs (AF = 14)

CONTENT
INTRODUCTION
DFB LASERS
DFB FOR CS
QUALIFICATION
PERFORMANCE

DFB Laser Diodes at 852 nm for atomic clocks in space | May 11th, 2006

PAGE | 26

We focus on power

QUALIFICATION - SPECTRAL MAPS

current I [mA]

DFB Laser Diodes at 852 nm for atomic clocks in space | May 11th, 2006

PAGE | 28

current I [mA]

QUALIFICATION - SPECTRAL MAPS

65 70 75 80

current I [mA] DFB Laser Diodes at 852 nm for atomic clocks in space | May 11th, 2006

PAGE | 29

current I [mA]

QUALIFICATION

We focus on power.

1. Package - Test Results

- Tests passed without defects
- SOT package successfully qualified
- Associated production processes are capable, frozen and qualified
- Product is capable of being stored and operated in humid environments (w/o condensation)
- Product is capable for manual iron solder process

2. Accelerated Aging - Test Results

Estimated Lifetime > 100,000 hrs.

3. Spectral properties - Test Results

- Wavelength Shift is below 0.2 nm (delta T < 3 K)
- Linewidth < 4 MHz after aging

PERFORMANCE

We focus on power

- Linewidth Data reported by Symmetricom, Inc.
 - Derived from Beatnote Measurements
 - < 1 MHz

QUALIFICATION PERFORMANCE

PERFORMANCE

We focus on power

- System Performance Data reported by Symmetricom, Inc.
 - Allan Deviation
 vs. Averaging of
 six DFB diodes
 in an optical
 pumped cesium
 clock prototype
 - < 3 $e^{-12/\sqrt{\tau}}$
- To compare
 - 3 $e^{-11/\sqrt{\tau}}$ Standard
 - 8.5 e^{-12/√τ}
 High Performance

QUALIFICATION PERFORMANCE

eagleyard Photonics GmbH

Rudower Chaussee 29 (IGZ) 12489 Berlin

fon: +49.30.6392 4520 fax: +49.30.6392 4529 e-Mail: info@eagleyard.com web: www.eagleyard.com

THANK YOU