Qualification strategy for high reliability submarine .98µm pump laser module

jean luc goudard, Avanex France, Nozay 91

UNLEASH THE POWER OF THE OPTICAL LAYER

Introduction

- Qualification approach
- Laser chip qualification
- Sub component qualification
- Module qualification
- Conclusions

Introduction

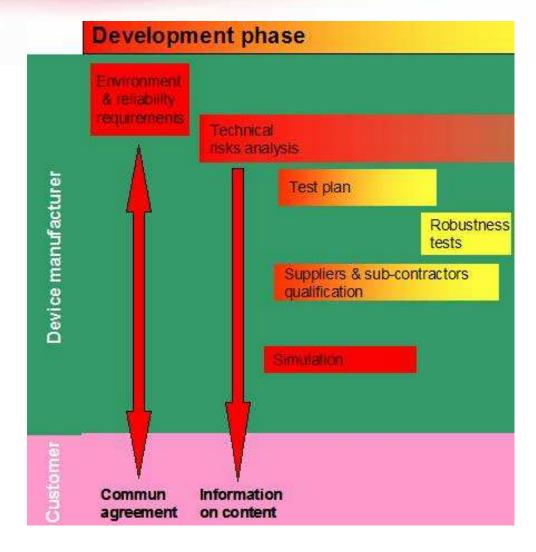
Submarine networks requires very high reliability :

- Difficulties and cost to repair
- Traffic rerouting
- Reliability requirements :
 - For the whole link level (Trans-pacific link for example) :
 - < 2 failures in 25 years</p>
 - At the pump component level (including repeater redundancy)
 - < 100 FITs (95% UCL) 25 years</p>
- A strategy to achieve such high reliability has been developed at Avanex.

Introduction

Qualification approach

- Laser chip qualification
- Sub component qualification
- Module qualification
- Conclusions



Mainly develops for terrestrial application

- time to market reduction
- cost reduction
- first steps in the development phase are usable for high reliable applications
 - risk analysis and risk assessment

NTELLIGENT PHOTONIC SOLUTIONS™ © 2004 Avanex Corporation

- This qualification approach takes into account the reliability target at the early stages of the development process.
 - Good knowledge of customer's environmental requirements.
 - Risk analysis and associated test plan
 - Robustness tests
- Other steps of this process, implemented in the manufacturing phase will be not described here.

• Risk analysis

- Review by the project team : including Product Design, Reliability and Engineering.
- Based on
 - Preliminary bill of materials
 - Preliminary flow chart
- Each step of the process is evaluated based on previous experience and knowledge.
- This is an iterative process,
 - each time the process is modified, risk analysis is performed again
- A ranking process is used in order to highlight major risks

- For all identified major risks, a dedicated program is defined in order to assess the risk :
 - Specific tests on partial products or on test vehicles
 - For example, if sealing process is critical, tests can be made on an empty packages
 - Validation of external suppliers.
 - From our experience, a failure in qualification is often associated with raw materials issue.
 - Modeling
- At the end of the development, all majors risks have to be removed.

Introduction

- Qualification approach
- Laser chip qualification
- Sub component qualification
- Module qualification
- Conclusions

Main factors for a reliable .98µm laser chip are

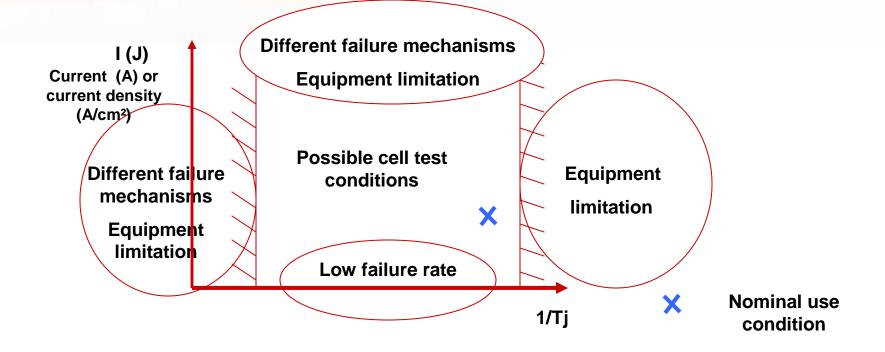
- Chip design,
- Epitaxy process,
- Mirror treatment
- Assembly of the chip on its submount

For all these steps, the risk analysis process is used.

т

- In order to have a first evaluation on the reliability of the chip on submount, a step stress test is performed :
 - Chips from different wafers are submitted to temperature step at constant current and constant duration.

- During this test optical power (L) and voltage (V) are monitored
 - this allows to get time to failure for each failed device
- For each step, time to failure is analyzed using a Weibull model (β =1 is expected random mechanism)
- Failed parts are analyzed to verify a unique failure mechanism
 - Visual inspection (COMD, ...)
 - Optical power (L) versus time signature
 - Failure analysis (EBIC, cathodoluminescence,...)



- The reliability estimation is made through a multi cell ageing program (high temperature high current).
- It is known from previous reliability studies that for GaAs pump lasers :
 - λ (Failure rate) = A (J/J₀)ⁿ exp (Ea /kTj₀ Ea/kTj) where
 - A is a constant
 - J, J_0 the current density (J_0 at reference temperature)
 - n is the current density accelerating factor (in the range of 2 to 5)
 - Ea: Activation energy (in the range of .5 to .7 eV)
 - Tj, Tj₀ : the junction temperature, $(T_{J0} at reference temperature)$
 - Knowing λ in one condition (J₀, Tj₀), one can compute its value for other conditions using n and Ea.

Choice of the cell test conditions

The choice of test conditions is a trade off between

- Number of cells : >5 and < 10
- Choice of stresses : to have a wide range of accelerating factors using estimates from previous experience (n', Ea')
- Number of parts in each cell which predict same number of defects in all cells.
- Estimate λ (n', Ea', J, Tj) * N (J, Tj) = cst
 - Where N (J, Tj) is the number of parts in the cell J,Tj
- A typical program consists of about one thousand of parts

At the end of the program, times to failure are analyzed

- Verification of random failure mechanism using Weibull model
- Computation to get maximum likelihood estimates of n and Ea
- Other tests like die shear tests and wire bonding destructive pull test are also performed on representative samples.

Introduction

- Qualification approach
- Laser chip qualification
- Sub component qualification
- Module qualification
- Conclusions

Sub components qualification

Main subcomponents are

- Pigtail which includes a fiber grating for wavelength stabilization.
 - Fiber grating is mainly qualified using :
 - non destructive pull tests.
 - Pigtail is mainly qualified using
 - Environnemental tests like
 - thermal cycling
 - damp heat storage
 - high temperature storage

Sub components qualification

- Package and lid with getter to trap water and organic compounds.
 - Internal atmosphere and hermeticity are qualified using
 - Liquid-liquid shock test
 - Damp heat and high temperature storage
 - Hermeticity test (He inside the package)
 - RGA

Introduction

- Qualification approach
- Laser chip qualification
- Sub component qualification
- Module qualification
- Conclusions

Module qualification

- Key factors for a reliable package are :
 - coupling stability
 - Sub-micronic mechanical stability is necessary
 - → YAG welding
 - Atmosphere with > 5% of oxygen , low water content, low organic pollution
 - ➔ Organic free process, O² inside the package, getter for both water and organic trapping
 - In order to prevent package induced failure (PIF) : high optical power "craks" organic compounds and carbon can deposit on laser mirror → COMD

Module qualification

Qualification tests are based on Telcordia GR 468:

- Shock and Vibrations
 - To test interfaces
- Thermal cycling, temperature storage, damp heat
 - To verify coupling stability
- Other tests are added
 - Long term ageing with in situ monitoring
 - To get a predictable model of the coupling drift that can be used in unitary selection
 - Customer's specific shock and vibration tests related to shipping and deployments

Introduction

- Qualification approach
- Laser chip qualification
- Sub component qualification
- Module qualification

Conclusions

main steps

Development

Qualification

Environmental requirements

Robust design

Risk analysis

Risk assessment

Limits

Failure mechanisms

Sub component qualification

Test program

Degradation model

Relevant selection file

Manufacturing

Process monitoring (SPC)

Pedigree review

Unitary selection using model

Rejection of outliers

INTELLIGENT PHOTONIC SOLUTIONS © 2004 Avanex Corporation

Conclusions

Methodology

- Risk analysis as earlier as possible in the development process
- Relevant qualification program
- Unitary selection and rejection of outliers
- This methodology allows us to fulfill our customer's requirements.
- This methodology could be applicable to other high reliability applications

