

Outlines

- Company Profile & Introduction to FOG Technology
- Qualification Strategy of the FOG Technology (included the Pump Laser Diode)
 - Building the Qualification Test Plan
 - Procurement Scheme
 - Environmental Test Sequences
- Results for the Pump Laser Diode
- Conclusion
- New project and prospects

- 2 -IXSPACE proprietary information

Company Profile

• iXSpace :

- 100% Subsidiary of iXSea, Founded in Feb 2004
- Benefits from iXSea leadership on FOG technology
- Benefits from iXSea 25 years expertise on Fiber Optic Component
- iXSea (<u>www.ixsea.com</u>):
 - World leader in
 - navigation and positioning
 - Imagery and survey systems
 - Moorings and construction equipment
 - ~180 employees

- 3 -IXSPACE proprietary information

Company Profile

iXSpace develop with EADS Astrium a family of ITAR free Inertial Measurement Units (ASTRIX):

- **Fiber Optic Gyro (FOG) technology of iXSea** (more than 2000 building axis)
- EADS Astrium expertise in the space activities
- Under CNES and ESA support / funding budget
- Covering a large range of space applications from LEO scientific missions to Telecom missions.

Mission

- Astrix 200 (0,001°/h) :
 - Pleiades : Earth Observation
 - Aeolus : Atmospheric Wind Profile
- Astrix 120 (0,01°/h) :
 - Planck : Cosmic Background radiation
- Astrix 120 HR (0,1°/h) :
 - **Galileo** (the first four satellites)

COMS : Korean Satellite

- 4 -IXSPACE proprietary information

Introduction to FOG Technology

a Fiber Optical Gyroscope is a rotation rate sensors, based on the Sagnac Effect which produces, in a ring interferometer, a phase difference between two counter propagative waves.

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 5 -IXSPACE proprietary information

Qualification of the FOG Technology

Optical Parts Qualification :

- Variety of optical device
 - Opto-Electronics Parts:

Pump laser diode; Optical detector PINFET;IOC (Integrated Optical Component)

Passive Optical Components:

Optical isolator; Optical coupler; Bragg grating

Fiber Optic:

Erbium doped fiber (for FOG Source); Fiber Coil (for Sagnac Interferometer)

• No space qualified alternative : COTS qualification

Batch procurement and qualification

Process / Material Qualification :

Bonding, fiber splicing, opto-electronics parts report ... *Qualification for the Butterfly 14-pin package report*

- 6 -IXSPACE proprietary information

Building the Qualification Plan *A teamwork for the best compromise !*

Component Engineer

Opto-electronics Part Expertise Components Risks management Matrix

"PMP^(#) Activity Plan"

Procurement scheme
 Elements to be tested
 (components, sub assembly, system)
 Environmental test sequence
 (Ageing, mechanical & radiations)
 Parameter to monitor and criteria

Defines which parameter to monitor to assure that the equipment will function proper! (Wavelength stability, Optical power...)

Process & Material Engineer

Process Risk management Matrix (operator dependant, repeatability..)

Space Environment Engineer

Environmental constraint

- Radiative environment (cumulated dose, dose rate)
- •Mechanical environment
- Thermal Environment
- •Ageing : Storage + Mission life time (5 up to 15 years)

(#) PMP : Parts Material & Process

- 7 -IXSPACE proprietary information

Qualification Strategy

Significant number of components Procurement Strategic procurement of 130 Pump Laser Serialization **Diodes** Qualification of 3 batches of chip (3 wafers) **Qualification Parts** Capacities of tests « limited » Upscreening Capacity of ovens, batches of 16 or 32 Parts for qualification **FM Parts** Diodes **Programmatic issues** Status OK **Qualification & Manufacturing « in the same** time » Upscreening Parts for FM Qualification Status OK FM Manufacturing - 8 -IXSPACE **IXSPACE** proprietary information

Procurement Scheme

Procurement set up

- Selection of component (evaluation phase)
 - Telcordia ?, preliminary testing, construction analysis...

Definition of lot for each part

batch of fiber, wafer for active parts...

• **Procurement Specification** (technical data from COTS datasheet, PFC reference...)

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 9 -IXSPACE proprietary information Procurement Scheme Construction Analysis

External Visual Inspection & X-Ray Identify packaging issues Ex : Pump Laser Diodes (butterfly)

- Seal test (gross and fine leak)
- PIND Test
- Internal Visual Inspection (Optical, MEB)

Wirebonds issues, bond pull analysis...

Ball bonding not centered, residual stich after bond pull test...

Micro-section & Material Identification

Output optical pigtail : transmission axis cut

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

IXSPACE

Solder joints for the output optical pigtail

Procurement Scheme Up_Screening

Based on :

Our knowledge about parts and manufacturer's process

Screening of the chip & the module

Astrium experts inputs

• IVE & X-Ray

- Up_screening applied to the Pump Laser Diode
 - Thermal cycling (10 cycles, [-40℃;+85℃], 10℃/min)
 - Burn In (70℃ during 240h)

- 11 -IXSPACE proprietary information

Environmental Test Sequence

Initial & final measurements @T°C [-40°C, 25°C & 70 °C]

⁽¹⁾FEM : Flight Electronics Module (Electronics Board + FOG Source = Flight Model)

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 12 -IXSPACE proprietary information

Parameter tested and criterion

FOG Source

Measured parameters

Optical Power vs Pump Current Function of Pump Laser Current : I_{mA} variable, [below the threshold current I_{th} up to $I_{nominal}$], $T_{ambient}$

Fog Source Spectrum @ I_{mA} constant (I_{OP}), $T_{ambient}$

Criterion

Fog Source Spectrum : Drift of the mean wavelength Drift of the Optical Power (*dB/krad*) Pump Laser Diode Current I_{nom} @ P_{nom} $T_{ambient}$

Pump Laser Diode

Measured parameters

Optical Power vs Pump Current Function of Pump Laser Current : I_{mA} variable, [below the threshold current I_{th} up to $I_{nominal}$], $T_{ambient}$

Criterion

Threshold Current I_{th} (Max value and drift <+/-15%)

Nominal Laser Current Inom @Pnom Tambient

- 13 -IXSPACE proprietary information

- Results :
 - One part was detected noisy during PIND Test
 - Five particles were trapped (SnPbAg solder particles)

- All strategic stock was PIND tested
- 100 parts tested \rightarrow 31 parts rejected

- 14 -IXSPACE proprietary information

Qualification Results FEM : Mechanical & Thermal Cycling Qualification

Vibration (Sine & Random) + Shocks

Axis	Frequency (Hz)	Qualification level
Perpendicular to the mounting	20-90	+ 3 dB / oct
plane	90-350	1.0 g²/ Hz
(Z axis)	350-560	-8dB/oct
29.95 gRMS	560-2000	- 3 dB/oct

Axis	Frequency (Hz)	Acceleration (g)
Perpendicular to the	100	40
mounting plane	1200	1200
(Zaxis)	1200	1200

Qualification successful

FOG Source (included Pump Laser Diode) : nominal working

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 15 -IXSPACE proprietary information **Qualification Results**

FEM* : Mechanical & Thermal Cycling Qualification

- Thermal Cycling
 - 500 cycles : [-40°C;+85°C], 10°C/min

With measurements at 20, 100, 200, 300, 400 & 500 cycles

- <u>20 cycles = Parts Qualification Level</u>
 - 200 cycles = Bonding Process Qualif Level
- **500 cycles = Parts Report Qualif Level**

*FEM : Flight Electronic Model (FOG Source including Pump Laser Diode)

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 16 -IXSPACE proprietary information **Qualification Results**

FEM* : Mechanical & Thermal Cycling Qualification

Thermal Cycling RESULTS

*FEM : Flight Electronic Model (FOG Source including Pump Laser Diode)

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 17 -IXSPACE proprietary information

Qualification Results Pump Laser Diode : Proton & Gamma irradiation

Proton Dose Qualification

• 3 Pump Laser Diodes

Qualification level

Parts "ON", 60MeV, Steps : 4.3e¹⁰ , 1.1e¹¹ & 1.8e¹¹p/cm²

Qualification results

I_{th} I_{nom} : nominal value, No drift

7 FOG Sources

(~7 Pump Laser Diodes)

Qualification level

2 FOG Sources "ON", 5 FOG Sources "OFF", 100MeV Steps : 3.2e¹⁰ , 9,6e¹⁰ & 1.6e¹¹p/cm²

Qualification results

FOG Source (included Pump Laser Diode) : nominal working

Output Power & Mean Wavelength : a insignificant drift due to the equivalent TID (~4krad)

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 18 -IXSPACE proprietary information

Qualification Results Pump Laser Diode : Proton & Gamma irradiation

Total/Ionising Dose Qualification

3 Pump Laser Diodes

Qualification level

Parts "ON"

Up to ~190krad[Si], two dose rates : 125rad/h & 190rad/h

5 measurements steps

Qualification results .

5% Drift Ith (%) -5% -10%

Threshold Current DRIFT vs total ionising dose dose (krad[Si]) 50 100 150

- 19 -**IXSPACE** proprietary information

200

Qualification Results FOG Source : Proton & Gamma irradiation

Total Ionising Dose Qualification

• 7 FOG Sources (~7 Pump Laser Diodes)

Qualification level

2 FOG Sources "ON" & 5 FOG Sources "OFF" TID = 120krad; steps @20, 80 & 120krad

Qualification results

Output power drift because of Er fiber Drift of the mean wavelength is nominal (< qualification criteria,

Qualification Results : 7 sources gamma irradiated

Qualification Results FOG Source : Storage & Ageing

• 5 FOG Sources (~5 Pump Laser Diodes)

Parameters :

- Nominal Optical Output Power (P_{nom}) as a function of Pump Laser Diode Current (I_{mA})
- Stability of the Spectrum @Inominal (<130ppm)</p>

Results :

- Nominal current : no drift, measurement consistent with the reference
- No drift of the mean wavelength (<13ppm limit of measurement)</p>

Pump laser diode current for an optical power

 \rightarrow No drift indicative of pump laser diode failure

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 21 -IXSPACE proprietary information

Qualification Results Pump Laser Diode : Thermal Vacuum Life Test

- (Temp = 70°C, Pressure <10⁻⁴ atm, up to 3000h, polarized parts)
 - The 3 Pump Laser Diodes are plugged, on a socket to be able to supply the diodes
 - These sockets are placed on a metallic plate, thermally regulated at 70°C
 - The three Pump Laser Diodes are placed into a vacuum chamber
 - Each part are pigtailed to permit to realize measurement on the diodes

Test performed at CNES premises

- 22 -IXSPACE proprietary information

Qualification Results Pump Laser Diode : Thermal Vacuum Life Test

Results

- Ith : maximum drift of 5%
- Nominal current : no drift, measurement consistent with the reference
- → No drift indicative of pump laser diode failure
- No Package Induced
 Failure after
 3000hours

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 23 -IXSPACE proprietary information

Conclusion

29 pump laser diodes used for the qualification for 130 parts procured !

- 2 parts as reference
- 5 parts for Initial DPA
 - **1 PIND Tested failed**
- 4 parts for Vibration+Shocks+Thermal cycling \rightarrow OK

8 parts for Life test

- **5** parts : Storage + Dry heat \rightarrow OK
- **3** parts : Thermal vacuum \rightarrow OK
- 10 parts for Protons + TID \rightarrow OK

WORKSHOP: Laser diodes in space, 11-12 May 2006, Toulouse

- 24 -IXSPACE proprietary information

Conclusion

The qualification results available to date show that <u>this Pump</u> <u>Laser Diode should be compatible with the space environmental</u> <u>requirements</u>.

The final analysis is in progress

- **Some final DPA are still in progress.**
- In spite of procurement scheme holding account of :
 - Technology information (iXSea experience, Construction Analysis....)
 - Planning constraints...
 - EADS Astrium as Space Qualification Experts
 - •••
 - \rightarrow A total of ~30% of parts of the strategic procurement are rejected
 - \rightarrow ~10% in IVE/RX investigations Some parts were used for qualification... \rightarrow ~30% in PIND Test \rightarrow ~7% in upscreening functional tests

- 25 -IXSPACE proprietary information

New project and prospects

- 26 -IXSPACE proprietary information