

Assessment Test Programme on the ALADIN CW Pump Laser Diodes

European Space Agency Agence spatiale européenne Y. Durand, R. Meynart, Workshop Laser Diodes in Space - Yannig.durand @ esa.int

CRYOSAT - 2005

SMOS - 2007

SWARM - 2009

GOCE - 2006

ADM-Aeolus - 2008

EarthCARE - 2012

European Space Agency Agence spatiale européenne

COMPANIENT OF CONTRACT OF CONTRACT.

•Goal: risk reduction before committing to full development of instruments approved for flight

•How?

Design, manufacture and test critical subsystems

- Space-representative build standards
- Demonstrate instrument performances
- Realisation of ground/airborne instrument

•Atmospheric LAser Doppler INstrument (ALADIN) Pre-Development Programme (start 2000):

- Pre-Development Model of receiver
- 2 parallel contracts on laser transmitter
- 4 parallel contracts on pump laser diodes assessment: CW & QCW
- Studies of specific technology improvement

COMPANIE Laser Transmitter Programme

Tripled-frequency Nd:YAG, 150 mJ at 100 Hz, operating in burst mode (7s ON 21s OFF)
Seeded by a reference laser
RLH Breadboard activities run by

➢Innolight

≻Tesat

Living

Earaday Isolator

Latent heat reserve

European Space Agency Agence spatiale européenne

- Aim: Identifying key parameters relevant to the Pump Laser Diodes Qualification Programme for Aeolus
- Tools
 - Lifetime: 10000 h
 - Proton Irradiation tests up to 2e⁺¹⁰ p/cm²
 - Failure Analysis
- Laser diodes
 - Thales Laser Diodes (QCW)
 - ➢ Dilas (QCW)
 - Ferdinand Braun Institute (CW)
 - InnoLight: Infineon & Thales (CW)

European Space Agency Agence spatiale européenne

Workshop Laser Diodes in space – CNES/ESA 11-12 May 2006 H Page 5

17/110

Assessment at InnoLight

Endurance test bench setup under a class 100-1000 laminar flow box. Laser diode holder with protecting tube.

Livina Plan

European Space Agency Agence spatiale européenne

Parameter	<u>Typical</u> <u>Values</u>	<u>Units</u>
Peak wavelength	808 <u>+</u> 3	nm
Spectral width (FWHM)	3	nm
Output power	2	W
Differential efficiency	1.1	W/A
Threshold current	0.65	А
Operating current	2.5	А
Operating Voltage	2.0	V
Reverse voltage	3	V
Beam divergence (FWHM)	1.5 X 8	deg.
Thermal resistance (junction \rightarrow heat sink)	6.5	K/W
Heat-sink temperature	25	°C
Storage temperature	-40 to +85	°C

1 Cathode 2 NTC 3 NTC case Anode

1.0 (0.039)

0.6 (0.024)

- Infineon SPL 2Y81
- Class IV Laser Product (IEC 60825-1)
- TO-220 package (copper base)
- InGa(AI)As strained layer qw structure

Livina Plan

- Laser aperture 200 µm
- Cylindrical correction
- Mechanical tolerances: \pm 0.2 mm

GTOY6063

European Space Agency Agence spatiale européenne

Workshop Laser Diodes in space – CNES/ESA 11-12 May 2006 H Page 7

ae 7 🗕

Assessment at InnoLight

<u>Parameter</u>	<u>Typical</u> <u>Values</u>	<u>Units</u>		
Peak wavelength	808 <u>+</u> 3	nm	(Cathoda ()	• Thales T
Spectral width (FWHM)	3	nm	-3.2 15.8 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• Class IV
Output power	1	W	\$2.3 7.8 7.8	 Package
Slope efficiency	1.0	W/A	8.5 <u>6.8±0.05</u>	• GaAlAs b
Threshold current	0.4	А	2.0	• Laser ape
Operating current	1.4	A		• No cylind
Operating Voltage	1.9	V		
Reverse voltage	3	V		Mechanic
Beam divergence (FWHM)	12 X 35	deg.	The second	
Emitting area	100 x 1	μm ²		
Heat-sink temperature	25	°C		
Storage temperature	-40 to +85	°C		

2 * 20 DL constant current for 10000 hours:

- 2 * 5: nominal current, 25 °C ± 0.5 °C case temperature
- 2 * 5: nominal current, 45 °C ± 0.5 °C case temperature
- 2 * 5: current to obtain 120% of nominal optical output power at beginning of life, temperature needed to obtain the nominal wavelength as obtained when the case temperature is 25 °C and output power is nominal.
- 2 * 5: 50 % of the nominal output power, 25 °C ± 0.5 °C case temperature

Parameter	0h	48h	168h	500h	1000h	2000h	5000h	10000h
Optical Output Power	х	х	х	Х	х	х	Х	Х
Forward Voltage	Х	х	х	Х	Х	х	Х	Х
Center Wavelength	Х	х	х	Х	Х	х	Х	Х
Threshold Current	х	х	х	х	х	х	Х	Х
Optical Efficiency	х	х	х	х	х	х	х	Х
Divergence	х			х		х	Х	Х
Characteristic Temperature	х			х		х	х	Х
Thermal Resistance	Х			Х		х	Х	Х

European Space Agency Agence spatiale européenne

Endurance test results: Infineon

COMPANIENT OF STATES OF S

Time [h]

COMPANIE Radiation test conditions

- 2 * 2 DL at 2*10^{^9} p/cm², 4*10^{^9} p/cm² and 2*10¹⁰ p/cm²; 60MeV protons
- •2 * 1: nominal operating condition
- •2 * 1: non operating condition

Limited set of electro-optical measurement performed after each exposure level
Full set of electro-optical measurements performed

- > 24h after last exposure level
- ➢ after 168h annealing at 80 °C

17/110

European Space Agency Agence spatiale européenne

Radiation test results

Failure analysis performed at ESTEC:

Visual inspection Scanning Photon Emission Microscope LEO 1530VP Scanning Electron Microscope, INCA EDX system installed on the SEM Radiographic inspection Bond strength test Microsection with a FEI STRATA FIB 205 Focused Ion Beam System

In conclusion these analyses revealed some scratches, some minor chip-outs along laser diode edges, some fractures along the same edges and peeling/crack of the backside mirror, not acceptable soldering.

European Space Agency Agence spatiale européenne

COMPANIENT OF CONTROL OF CONTROL

Electro-optical characterisation setup

Endurance setup : test chamber for 2 DL and test rack for the 20 DL

European Space Agency Agence spatiale européenne

COMPANIENT OF CONTRACT OF CONTRACT.

Parameter	Value	
Emitting area	6 emitters, 60 µm width, 1 mm pitch	
CW output power Pop	> 1 W	All values for T = 25°C and from begin of
	> 1 VV	life to end of life
Operating current /	< 3.1 A	
Threshold current Ith	< 1.8 A	
Slope efficiency S	> 0.95 W/A	
Operating voltage U	< 1.8 V	
Life time	> 4 years	EOL: 20% power drop at constant current operation respect to BOL
Reliability within life time	0.98	
MTTF	1.73x10 ⁶ h	
Wavelength λ	(807 ± 1) nm	
Spectral width $\Delta\lambda$	3 nm	
Beam divergence – fast axis	< 60°	
Beam divergence – slow axis	< 6°	AT A LAND

European Space Agency Agence spatiale européenne

Workshop Laser Diodes in space – CNES/ESA 11-12 May 2006 – Page 16

Living

20 DL constant current for 10000 hours:

- 5: 4W, 25 °C ± 0.5 °C case temperature
- 5: 4W, 45 °C ± 0.5 °C case temperature
- 5: 2W, 51 °C ± 0.5 °C case temperature
- 5: 1.5W (nominal output power), 25 °C ± 0.5 °C case temperature

Electro-optical characterisation at 500h, 2000h and 5000h

From a reliability of 0.98 for 4 years, the MTTF value is $1.73*10^{6}$, at 1W and 25 °C. Assumption: activation energy Ea = 0.5 eV and power law exponent n = 2.3

P/W	T/°C	Allowed Number of Failures to Proof the MTTF
4.0	25.0	0
4.0	45.0	2
1.5	25.0	_*
2.0	51.2	0

European Space Agency Agence spatiale européenne

Endurance test results

COMPANIE Radiation test conditions

- 2 DL at 2*10^{^9} p/cm², 4*10⁹ p/cm² and 2*10¹⁰ p/cm²; 60MeV protons 60% of rad time; 25 MeV protons 40 % of rad. time
- •1: nominal operating condition
- •1: non operating condition

Limited set of electro-optical measurements performed after each exposure level
Full set of electro-optical measurements performed

24h after last exposure level

after 168h annealing at 70 °C

Accelerating ageing test

Anomalous failure behaviour:

- •More failure at lower temperature
- •No mirror defect, but electrical shunts within the diode laser bars

At lower temperature, the strain between the mounting layers is more important for larger differences between soldering and operating temperatures

Solder between heat sink and Cu mount: intermetallic compound

Soldering process optimised, Cu mount supplier changed Overall strain reduced by smaller resonator length

European Space Agency Agence spatiale européenne

Radiation tests: successful for all laser diodes under the given environment (typical for LEO and 3 years lifetime)

Endurance tests: not successful, but useful: Thales Laser Diodes: lifetime reached when derated Osram: lifetime not met FBH customised laser diodes: chip technology is reliable

Failure analysis: Thales Laser Diodes-Osram: many areas to be improved (soldering, bonding, gluing...) FBH: mounting to be improved, design to be optimised

Useful assessment test programme:

Laser diodes from FBH selected in the reference laser for ALADIN and have passed the qualification.

COTS laser diodes are less suitable for space applications than customdesigned .

European Space Agency Agence spatiale européenne