Statistical approach for long-term predictions of 1550 nm laser diodes

L. Bechou¹, L. Mendizabal¹, C. Aupetit-Berthelemot², <u>Y. Deshayes¹</u>, JM Dumas², D. Laffitte³, JL Goudard³, Y. Danto¹

Collaboration :

¹IXL Laboratory - University Bordeaux 1 - CNRS UMR 5818 - ENSEIRB Email : bechou@ixl.fr

²ENSIL-UMOP/GESTE FRE 2701 - University of Limoges

³AVANEX-France - Built·In Reliability Group

Outline

- Context and objectives
- Description of the Laser diode device
- Lifetime estimation
 - Degradation law extrapolation
 - Monte-Carlo simulation
- First time to failure extrapolation
- Conclusions and perspectives

CONTEXT

Emerging aspects for system reliability demonstration (1/5)

Example: N components with λ constant : exponential F(t) distribution Activation energy : $E_a = 0.6 \text{ eV}$ Test temperature : T = 125°C (400 K) Duration of test : $t_{test} = 1000 \text{ h}$ Acceleration factor : $A_F = 350$

 α : Percentage of chances to obtain 50% of failures before t_{test} for N>N_{min}

Context : Approaches for actual reliability estimation (2/5)

I - Number of samples $< 10 \rightarrow$ reduce the cost of qualification tests

Context : Approaches for actual reliability estimation (3/5)

II – Difficulty to measure the drift of electrical and optical parameters

Context : Approaches for actual reliability estimation (4/5)

III – Failure criterion is not reached after qualification tests → stabilized technology

Context : Implementation scheme of academic laboratory work for reliability estimation

Reliability estimation of laser diodes (lifetime distribution, physics of failure and impact of environmental stresses)

Objectives

Lifetime estimation and impact on system performances

Description of the laser diode device

Single mode DFB Laser diode emitting at $1.55 \ \mu m$

Active zone technology : InGaAsP/InP double buried heterostructure DBH

Passive waveguide : collimate laser beam in single mode optical fiber (3-5 µm)

Lifetime estimation : Degradation law extrapolation

Test conditions and actual drift levels of laser diode for WDM applications :

- critical parameter : bias current $\rightarrow \Delta \lambda_C / \Delta I \approx 0.006 \text{ nm/mA}$
- ageing test : active storage with constant optical power

=> 10 mW - 150 mA – 85℃

- failure criterion : 20 % of I_{bias} drift normalized by TELCORDIA 468 GR
 NOT OBTAINED even after 10000 hours of ageing time
- Weak number of samples : 10 components only

=> degradation law extrapolation : only 8% maximal of I_{bias} drift with typical equation :

 $\Delta I_{op}/I_{op} = a t^{m}exp(-E_a/kT)$ with 0<m<1 and activation energy : $E_a \sim 0.6 eV$

Lifetime estimation : Degradation law extrapolation

Experimental drift

Case 1	I _{bias} (3 to 10%)	I _{th} (0.05-2%) α (-0.5 to -4%)
Case 2	I _{bias} (0.05 to 1%)	I _{th} (0.05-1%) α (0%)

$$P_{opt} = \alpha (I_{bias} - I_{th})$$

$$\Rightarrow dP_{opt} = (I_{bias} - I_{th}) d\alpha - \alpha dI_{th} + \alpha dI_{bias}$$

$$dI_{bias}$$

- I_{bias} : Bias current
- I_{th} : threshold current
- I₁ : leakage current
- α : Optical efficiency

+ If
$$dP_{opt} = 0$$

Measurement conditions
$$= \frac{(I_{bias} - I_{th})}{d\alpha + dI}$$

Ω

$$\frac{d\alpha}{d\alpha} + dI_{th}$$

Lifetime estimation

Degradation laws extrapolation in relation with physical parameters and failure mechanisms (bias current for laser diode) $\Delta I_{op}/I_{op} = at^m exp(-E_a/kT)$

Increase the number of samples by simulation method (>1000)

Reliability estimation $(\text{teol}, \lambda(t), ...)$

Lifetime estimation : Statistic computations

Increasing a number of samples using statistic simulation method (Monte-Carlo)

15

First times to failure extrapolation

For failure criterion : 20% $\Delta I_{op}/I_{op}$ First times to failure estimation ≈ 100 FITs at 20 years

Conclusion and perspectives

- The relation between degradation laws and failure mechanisms have been given for DFB BH Laser diode
 - Increase of single mode laser diode DFB bias current

=> drift of the central wavelength $\lambda_{\rm C}$

- The strong interest of Monte-Carlo statistic methodology
 - estimation of the lifetime distribution and first times to failure
 - complementary tool of actual life-testing methods and physics of failure in the context of a reliability modeling approach

Emerging aspects for system reliability demonstration

Necessity of lifetime predictions using both failure mechanisms and distributions of experimental degradation kinetics for each element BUT ALSO INTEGRATE APPROACH OF SYSTEM SIMULATIONS¹⁸

- IMPLEMENTATION OF AN ORIGINAL APPROACH FOR RELIABILITY PREDICTIONS => Impact of specific failure criteria – Robustness evaluation of new devices (achromatic routing mux/demux for low-cost applications)
- / IMPACT ANALYSIS OF INTRINSIC PARAMETERS DEGRADATION KINETICS OF THE LASER DIODE (assuming a power-law dependence) :
 - Degradation of modulation bias current :
 - => Extinction of the eye diagram (> 40%), in correlation with the quality factor, on the degraded channel (reduction of almost 40%), after 25 years in operating conditions
 - Degradation of centre wavelength :
 - => Cross-talk generation between degraded channel and adjacent channel
 - => Insulation increase from -80 dB in initial to -50 dB after 25 years in operating conditions
 - Overestimation of center wavelength failure criterion regarding application conditions
 => For a maximal drift of 0,1 nm, the lifetime is basically reduced to 1 year. Or after 1 year, Q ≈ 8 => BER > 10⁻¹⁵ !

STRONG INTEREST TO STUDY THE IMPACT OF DEGRADATION KINETICS DISTRIBUTION OF MONITORED PARAMETERS

IN PROGRESS ACTIVITIES : Implementation of Multi-Component Models (MCM) in system simulations

In progress collaborations for this issue : *ENSIL (France), AVANEX-France (France), ALCATEL CIT (France), CEMD (University McMaster-Canada),*