

808nm – high power diode lasers for long term stable pump modules

- G. Erbert, K. Häusler, W. Pittroff,
- G. Tränkle FBH
- T. Schwander Tesat Spacecom

...translating ideas into innovation

outline

- FBH
- Design, technology and properties of single emitters
- Performance of CW laser bars
- QCW pump sources for BepiColombo
- First results for QCW pump sources with higher power and repetition rate (ATLID)
- Summary and outlook

Facts & Figures

Shareholders

- State of Berlin / Federal Republic of Germany

Founded in

- 1992

Member / Partner of

- Forschungsverbund Berlin e.V.
- Leibniz Association
- Technische Universität Berlin
- Humboldt-Universität zu Berlin

Staff

160 (including 75 scientists & PhD students)

Budget / Turnover

- 14 M€ (including 5 M€ project revenues)

Mission of FBH

Applied research and development of microwave & optoelectronic devices, circuits and modules:

Innovations with Microwaves & Light

Market-driven & customer-oriented

- Close cooperation with partners in research and industry serving customers needs
- Part of value chain
- Demonstrators, pilot & small scale production
- Stringent quality management, DIN EN ISO 9001:2000

Research Topics

- Microwave components
- Power diode lasers
- UV emitters
- III/V-technologies

Programs

- Research and Development on microwave & optoelectronic devices, circuits, modules
- Transfer programs
 - Spin-offs and start-ups
 - SMEs
 - Global players
- Services

808nm diode lasers - basic technology of FBH

design:

- GaAsP QW,
- AlGaAs LOC structure (x ≈ y+0.3)
- low vertical divergence

chip-technology

- MOVPE multi wafer reactor
- process line (full wafer 3")
- passivation after cleaving
- coating by dielectric layers using IBS

mounting

- AuSn soldering of chips
- use of expansion matched submounts
- Au wire bonding

808nm diode lasers of FBH - basic data

typical data of 100µm stripe emitters

- Threshold current density
 - ≈ 250A/cm²

Slope efficiency

- > 1.2W/A
- Temperature stability
- > 120K
- COD level (500µs, 50Hz)
 - > 10W/100µm

TM polarisation

808nm diode lasers of FBH - basic reliability

- Lifetime test at high facet load
 - Mounting on C-Mount (R_{th}≈10K/W)
- Excellent stability40mW / µm stripe width
- failures at 50mW / µm stripe caused by internal defects
- QCW bar performance determined by mounting issues and homogeneity!
 - Stability of chip material against optical load
 - > 50 000h @ 2% duty cycle
 - small chips

CW – laser diode benches for space suited 808nm pumping modules

- Projects
 - LCTSX
 - ALADIN
 - GIFTS
 - LTP
 - QSL
- Chip design
 - minibar (chip size <5mm)
 - low fill factor
- Space qualified mounting process
 - expansion matched materials
 - AuSn solder
 - high precision, robust FAC fixing
 - external spectral stabilization

Reliability of space suited CW- laser diode benches

4W, 10 000h, 60°C LCTSX

4A, 10 000h, 25°C ALADIN

- Long term test ⇒ reliability > 0.99 4 years at P = 1W (≤10mW/μm)
- Tested mounting scheme
 - temperature cycling
 - mechanical issues

808nm - QCW pump sources for Bepi Colombo

Requirements

- 700 W usable power (fibre coupled)
- 200µs pulse width, ≤10Hz rep. rate
- Long term stability
 - 300 Mio shots
 - about 10 year storage
- $T_{op} = (22 \pm 10) ^{\circ}C$
- **■** Environmental conditions (- 45°C ... 65°C)
- small size and low weight

808nm - QCW pump sources for Bepi Colombo: chip - design

- design for 70W power / bar (derated power level)
- GaAsP QW
- LOC -structure
- small chip size
 - facet load 20mW/µm
 - 4.5 mm emitting aperture (half of standard bar!)
 - 1.5 mm resonator length
 - 35 emitter, filling factor 70%
- conversion efficiency of chip ≈ 60%
- wavelength (807 ± 2)nm

808nm – QCW pump sources for Bepi Colombo: mounting issues

- no dense vertical stacks
- Single devices on 10x10mm² footprint

- Expansion matched materials
- AuSn soldering (chip, n-contact plate)
- Wire bonding
- Approved FAC fixing

808nm - QCW pump sources for Bepi Colombo: L-U-I curves

- $I_{th} \approx 15 A$
- $I_{op} \approx 70 \text{ A} @ 70 \text{W}$
- Slope η_d ≥ 1.25W/A
- conversion efficiency η_c ≈ 50% @ 70 W
- Series resistance
 R_s ≈ 9 mΩ
- COD level P_{max} > 250W !
 (> 80mW/µm)

808nm - QCW pump sources for Bepi Colombo: spectral

- spectral peak 806nm
- spectral width (95% power)< 4nm
- additional modulation by FAC
- wavelength shift determined by temperature

808nm - QCW pump sources for Bepi Colombo: beam profile

- Fast axis with collimation
- slow axis

- θ_1 < 5mrad (>95% power)
- θ_{\parallel} < 120mrad (>95% power)

Preliminary life test for bars Bepi Colombo

Purpose

- demonstration of feasibility
- determination of screening parameters

Conditions

- 10 devices (348 emitters) (selected by L-I curve + 300h burn in at 100A / 10Hz)
- constant current $I_{op} = 142A \text{ (P > 150 W)}$
- 20 Hz
- 1300 h ≈ 93.6 Mshots

Results of life test

Parameter	1	2	3	4	5	6	7	8	9	10
I _{th} /A	13.6 13.7	14.7 14.8	13.9 15.1	13.0 13.2	14.6 15.1	14.0 14.6	13.6 15.6	13.2 13.8	14.0 13.7	13.9 14.2
I _{op} (100W) /A	92 92	94 100	92 92	92 104	93 92	94 100	94 100	92 105	92 96	92 94
Δλ /nm	0	0.5	0.1	-1.3	0	0.2	0.2	0.7	1.1	0.1
Emitter failure	0	1*	0	7	0	2	1*	6	0	0

- no bar failed (EOL current limit I_{op} < 110A @100W)
- Long term stable spectral behaviour $\Delta \lambda$ < 1nm
- Reliability > 0.999 per bar for P_{op} = 70W, 3.15x10⁸ shots (10Hz, 1 year)
 - calculation based on random single emitter failures,
 - acceleration by power (P/Pop)^{2.3}
 (2.3 standard value of 808nm devices)

808nm - QCW - pump sources for higher average power (ATLAS)

- Requirements
 - 808nm
 - space qualification issues similar to Bepi Colombo
 - output power ≥ 100W per bar
 - repetition rate ≈ 100Hz
 - reliability 10 Gshot

- improved chip design for slightly higher peak power
- Improved mounting scheme designed for 10x-higher average power

808nm - QCW – pump sources for higher average power (ATLAS) first results I

100W power / bar

- GaAsP QW
- improved layer structure
- chip size
 - facet load 30mW/µm
 - 4.5 mm emitting aperture
 - 1.5 mm resonator length
 - 35 emitter, filling factor 70%
- conversion efficiency of chip ≈ 65%
- wavelength (807 ± 2)nm

808nm - QCW – pump sources for higher average power (ATLAS) first results II

- spectral peak at 804.5nm
- enabling λ tuning
 by CW bias current
- spectral width < 4nm (95% power)

wavelength shift determined by temperature

Summary – 808nm QCW pump lasers

- electro optical performance
 - I_{op} < 100A @ 100W (\approx 70A @ 70W)
 - $P_{cod} > 3x P_{op}(70W)$
 - λ ≈ (805...806)nm, $\Delta \lambda$ (95%) ≤ 5nm @ P_{op}
 - far field Θ_{\parallel} < 5mrad, $\Theta_{\parallel} \approx 120$ mrad @ 95%
 - $U_{op} \approx 2.4 \text{ V at } 100 \text{A}$
- mounting scheme
 - proved design for 10Hz
 - thermal cycling between 45°C and 65°C
- reliability > 0.999 (70W, 1 year, 10Hz) expected

outlook

- To do short range
 - screening procedure
 - verification of reliability
 - extended life time tests (acceleration!?)
 - reducing series resistance

- Improvement opportunities chip longer range
 - optimised design (pumping scheme)
 - wavelength stabilisation
 by internal gratings (DFB /DBR)

