

Truly Hermetically Sealed

Lasers for Reliable Long

Term Space Operation

Thomas Schwander TESAT Spacecom GmbH & Co, KG Backnang, Germany

ESA-NASA Workshop, Noordwijk, June 21st, 2006

Hermetic Laser Modules

TESAT Space Heritage

Space borne communication pay loads for commercial long term applications are our business for more than 40 years

Hermetic Laser Modules

Backnang, Germany

- 1949: AEG Fernmeldetechnik
- Telefunken GmbH 1955:
- 1967: AEG Telefunken AG
- 1983: ANT Nachrichtentechnik GmbH
- 1995: Bosch Telecom GmbH
- 2000: Bosch SatCom GmbH
- 2001: Tesat-Spacecom GmbH & Co.KG

SPACECOM

TESA

3

TESAT LCT (Laser Communication Terminal) Heritage

SILEX: LEO and GEO terminal Prime: MATRA Tesat: Communication subsystem, Laser diode procurement (1987), Receiver front end In-Orbit-Verification in 2002

Teledesic: LEO network (500 LCTs) Prime: Tesat Program stopped in 1999 but Risk Mitigation Phase successfully closed including pump diode procurement, and first laser head and pump module design

LCTSX: 1 LEO LCT on TerraSAR 2nd LCT on US NFIRE Satellite Prime: Tesat LCT under delivery, In-Orbit-Verification in 2007 1064nm, 3 Gb/s, homodyne, 25kg, 35W

TESAT Space Borne Reference Laser Units (RLU) in EO and Science

- DWL, ESA: Injection seeder BB for Doppler Wind LIDAR delivered September 2001
- GIFTS, NASA: Reference laser BB for Fourier Transform Spectrometer delivered in May 2002
- SMART-2, ESA: Laser BB for gravitational wave detection test program delivered in November 2002
- GIFTS, NASA: FM delivered in February 2005
- ALADIN, ESA: Cavity locked, dual laser, injection seeder FM Units for Doppler Wind LIDAR, to be delivered in 2006
- LTP, DLR: Laser FM for gravitational wave detection test program, to be delivered in 2007
- QSL, U.S. aerospace company: Q-switched Reference Laser FMs, to be delivered in 2006

Are there keys for reliable long term operation under space environment?

What might hurt a laser in space environment - and before?

- Humidity !
- Dust
- Pressure difference during launch?
- Wrong technology (In-solder, CTE-mismatch, ...)
- Optically induced deposition of hydrocarbons ("PIF")
- Atomic Oxygen ?
- Protons, Electrons, Ions, ...

What's the consequence for the package?

Fill it (with N₂/O₂) **Seal it** Or Forget it

How do we define hermetic housings?

- Minimum standard acc. EN 600068 or MIL-883 is not sufficient (up to 1x10⁻⁶ mbar l/s allowed) !
- He leak rate below 5x10⁻⁹ mbar l/s (for 10 cm³), corresponding to > 90% of initial pressure after 15 years
- Laser-welded housings
- Electrical glass feed-throughs
- Soldered optical windows (no glued fibers)
- Qualified processes

MATION © Tesat Spacecom GrrbH & CoKG reserves all right ing to third parties

PROFRIET ARY INFORMATION

Co.KG

Typical Laser Module Manufacturing Flow at TESAT

Typical Laser Qualification Flow at TESAT (e.g. PMH)

Includes He fine leak test

11

Test step

Tesat Spacecom GmbH & CoKG

0

PROFILIE Ich as cop 203.06

the collection of the collecti

GmbH &

Standard Low Power Pump Module

Cold 1-out-of-2 redundancy

Polarisation multiplexed

Bragg-Reflector stabilized

Max. output power: 5 W

up to 0.9998 reliability

100 µm, 0.22 NA fiber

Real hermetic package with N_2/O_2 filling

40mm x 45mm x 20mm

in cooperation with ILT, Aachen and FBH, Berlin

Co.KG

Hermetic Laser Modules

Output power: 50 mW - 300mW CW or 1kW qs (5ns, 7.5kHz PRF)

70 GHz tuning range (30GHz or 10GHz FSR)

Frequency stability in the kHz-regime

Collimated beam or Polarisation maintaining single mode fiber output with built in Faraday isolator

Real hermetic package with N₂/O₂

25mm x 20mm x 15mm

Conclusions

- Only laser welding, soldering, and glass
 feed throughs enable true hermeticity
- Stable atmosphere inside over more

than 15 years with I < $5x10^{-9}$ mbar I/s

- Easy testing on earth (ambient)
- Improved safety against space
 environmental impact
- Qualified key components for
 - TESAT LCTs and RLUs

