

Light-weight, fiber-coupled qcw diode laser pump module for the BepiColombo laser altimeter

Dr. Matthias Haag*
Research and Development / DL-Systems and Modules

DILAS Diodenlaser GmbH, Galileo-Galilei-Str. 10, 55129 Mainz-Hechtsheim, Germany

DILAS Diodenlaser GmbH

DILAS GmbH founded 1994 located in Mainz Germany

DILAS Inc.
founded 2005
ocated in Tucson

located in Tucson Arizona

Founded: 1994

Employees: 153

Majority Shareholder:

Rofin Sinar Technologies Inc. since 1997 (Nasdaq RSTI)

ISO 9001-2000 certified Quality System

Markets:

- DPSSL pumping
- Material processing
- Graphic Arts
- Medical
- Defence
- Instrumentation

Research:

35 academics

& engineers

R&D Budget:

~11% of revenue

Facilities:

Mainz / Germany

§ 2 buildings

~3300m² total

§ 500m² clean room with class 100 workbenches

§ other production area of ~700m²

Tucson / Arizona § 300m² facility

Sales offices:

representatives in all major market areas or direct sales from headquarter

Products:

§ Laser diode bars

§ Laser diode stacks

- vertical / horizontal

§ Fibre coupled LD

§ Laser Diode Systems

§ custom solutions

§ available wavelength

- 650...690nm

- 785nm, 792...797nm

- 808nm

- 830nm

- 880nm

- 915nm

- 940nm

- 980nm

- 1064nm

- 1470nm

Stack

Quasi-cw Products

Fibre coupled module

BepiColombo Mission

- ESA & JAXA Joint Mission
- Launch in 08/2013
- 8.45 years travel time
- >1 year scientific operation

BELA - BepiColombo Laser Altimeter

BELA Laser Design Concept

- Fiber coupled pump diodes
 - thermal and mechanical separation of pump source and laser head
- Longitudinal pumping scheme
 - ▶ long absorption path
 - optimized overlap pump beam / laser mode
 - ▶ higher efficiency
- qcw pumping
 - ▶ 200ms pump pulse duration as compromise between efficiency and output energy
- Passive Q-switching with Cr⁴⁺:YAG
 - simple design
 - ▶ low mass
 - ► low power consumption
- MOPA with 2-stage amplifier
 - avoid self-lasing
 - ▶ redundancy

BELA Laser Design Concept

- Wavelength: 1064 nm

- Puls Energy: 50 mJ

- Puls duration: <10 ns

- Beam quality: M² <1.6

- Rep. rate: 10 Hz (20 Hz)

Specifications for BELA Pump Diode Unit

3 sub-units:

- 2 x 500 W (660 W)

- 1 x 100 W (165 W)

• 800 µm fibre coupling

No liquid cooling

Wavelangth: 806 +/- 3 nm

Puls duration: 250 μs

• Duty Cycle: 0.25-0.5 %

Rep. rate: 10 Hz (20 Hz)

• Electrical power: < 13,5 W</p>

Diode Current: < 110 A</p>

Voltage: < 32 V</p>

• Efficiency: > 70 %

Total mass: < 1,4 kg</p>

• Vibration: 26 g_{rms}

Radiation: 100 krad

Temperature:

- Non-op.: -40 to +60°C

- Operational: +18 to +33°C

Industrial Module to Space Module

1000 W rated power 16 diodes

Mass: 9.5 kg

Size $(I \times w \times h) : 30 \times 23 \times 11 \text{ cm}^3$

Volume: 7590 cm³

1100 W rated power

22 diodes

Mass: 1.3 kg

Size (I x w x h): 17 x 8 x 10 cm³

Volume: 1360 cm³

BELA Pump Diode Unit

electrical interface

mechanical interface

BELA PDU Sub-Module

BELA PDU Sub-Module

BELA PDU Sub-Module

Space Aspects

- light weight design / materials
- radiation hard optics, metal coated fiber
- shock / vibration proof according to space specifications
- no / low-rate outgassing materials / adhesives
- space approved diode mounting technology (tbd)
- liquid free cooling system
- multiple redundancy concept for diode failure
- vacuum sealed diode stack

BELA diode stack

BELA diode stack - redundancy concept

BELA diode stack - qualification

Diode

Diode + FAC

3 integration stages:

diodes:

mounting technology:

• FAC mounting:

• FAC:

pitch:

connectors:

dimensions:

vacuum sealed

diode, diode+FAC, stack

50 % fill-factor

In-free (AuSn) with submount

UV adhesive / solder

600 µm

 $1.6 \, \text{mm} + x$

3

see drawing

Thank you for your attention

Dr. Matthias Haag DL-Systems

Dr. Thomas Brand Optics

DILAS Diodenlaser GmbH, Galileo-Galilei-Str. 10, 55129 Mainz-Hechtsheim, Germany