

- Heavy ion Radiation Evaluation of FLASH Memories.
- Final Presentation of ESTEC Contract No. 13528/99/NL/MV, COO-7.
 - Evaluation objectives
 - Devices tested
 - Test set-up
 - Test conditions
 - Error detection
 - Heavy ions source
 - DUT responses observed
 - Results per device
 - Conclusion

- Evaluation objectives
 - NAND Flash memories are potential candidates for mass data storage (in the present evaluation, the devices were not specifically considered for a given project)
 - Aim of this evaluation was to :
 - First define a set of adequate test conditions
 - Identify the different types of device responses to SEU
 - Compare the sensitivity of a variety of devices (size, die revision)

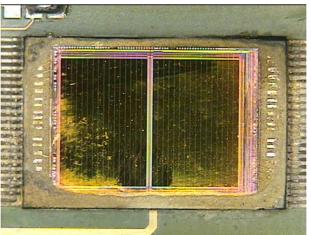
- NAND Flash Memories
- The following devices have been provided by ESA for this evaluation exercise

Part type	Manufacturer	Size	Package Date Code
K9F6408U0A-TCB0 K9F6408U0B-TCB0 K9F2808U0B-YCB0 K9F5608U0A-YCB0 K9F1208U0M-YCB0 TC58256FT	Samsung Samsung Samsung Samsung Samsung Toshiba	32Mx8 64Mx8	TSOP2 028 TSOP2 121 TSOP1 130 TSOP1 043, 103 TSOP1 130 TSOP1 0011

Nand Flash Characteristics

- Voltage Supply : 3V3
- Memory array organized in blocks of pages of 528 (512 + 16) bytes
- Page register of 528 (512 +16) bytes for data transfer
- All devices were Single Level Cell (SLC) and 1 die per package (no stack)
- Multiplexed 8-bit bus for command, address and data
- Write Protection (WP)
- Reset
- Sequential read mode (not used, address is provided for each page)
- Multi plane Page/Block program / Erase/ for the K9F1208U0M-YCB0 (not used)

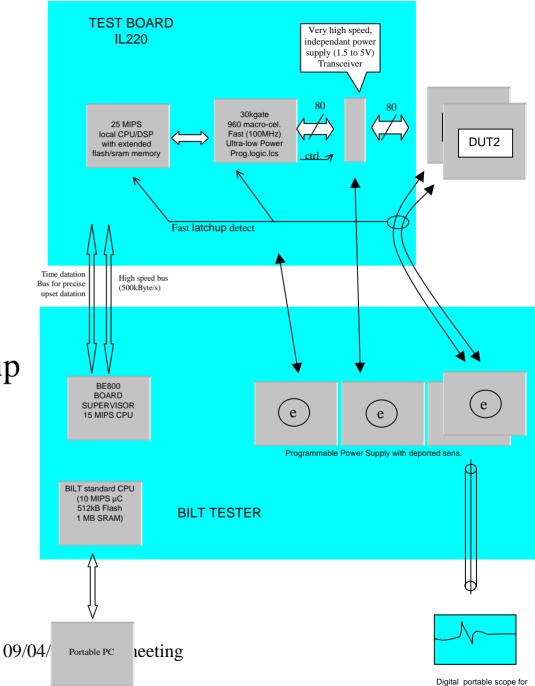
Memory Organization


		Blocks	Pages	Bytes
			/Block	/Page
K9F6408U0A-TCB0	(8M + 256K) x 8bit	1024	16	528
K9F6408U0B-TCB0	(8M + 256K) x 8bit	1024	16	528
K9F2808U0B-YCB0	(16M + 512K) x 8bit	1024	32	528
K9F5608U0A-YCB0	(32M + 1024K) x 8bit	2048	32	528
TC58256FT	(32M + 1024K) x 8bit	2048	32	528
K9F1208U0M-YCB0	(64M + 2048K) x 8bit	4096	32	528

• These devices may be delivered with invalid blocks which have to be excluded during the test.

Sample preparation

- Chemical etch of the package epoxy
- 2 functional samples per device have been prepared
- Main difficulty was the ratio of the die size to the package dimensions
- Photo of prepared sample K9F1208U0M-YCB0


Flash memories

Flash memories

D/TOS-QCA Final Presentation Day 2002. ESA/ESTEC, Tuesday April 9th, 2002

Schematic of the test set-up

DUT current monitoring

Test configurations

- Power off, Power on
 - <u>Prior to exposure</u>, write the memory with a given pattern
 - <u>After exposure</u>, Read all the pages of the memory
- Write/Read/Read (W/R/R) test condition
 - <u>Prior to exposure</u>, write the memory with a given pattern
 - <u>During Exposure</u>, perform continuously the following cycle on 10 given blocks (randomly selected before the test)
 - erase the block
 - write each page of the block
 - read each page of block and if one error repeat the read of the page
 - <u>After exposure</u>, read all the pages of the memory (less the 10 blocks)
- Read/Read
 - <u>Prior to exposure</u>, write the memory with a given pattern
 - <u>During Exposure</u>, perform continuously the following cycle on all blocks
 - read each page of block and if one error repeat the read of the page
 - After exposure, eventually read all the pages of the memory
 - Possibility to active WP for read operation and to reset the device at each cycle

Flash memories

Error detection

- Upsets : the total number of words in errors for each read block at each cycle iteration
- In addition, the following information is recorded (with a limit of 6500 lines maximum)
 - Cycle iteration number
 - Plan Number (if relevant)
 - Block Number
 - Page Number
 - Column Number
 - Spare column number
 - Awaited word pattern
 - Mask error
- The following errors are also detected :
 - Max time erase error
 - Max time write error
 - Erase Error (DUT read status)
 - Write Error (DUT read status)

Heavy Ions source

- The European Heavy Ions Facility of Louvain La Neuve has been used for this evaluation
- Ions actually used in the course of the present evaluation

Ion Specy Energy		LET	Range	
	(MeV)	(MeV/(mg/cm ²))		μm
20-Ne	78	5.85		45
40-Ar	150	14.1		42
84-Kr	316	34		43
132-Xe	459	55.9		43

- The use of a tilt angle allows for additional effective LET values

DUT responses observed (1/2)

- <u>Stuck bits</u> :
- These errors have been seen after power off, power on and Read/Read test conditions
- After exposure above a given LET, some bits, randomly, remains stuck to 1(erased). The number of stuck bits decrease with time. However a read of the memory two hours after exposure could lead to detect half the initial number of stuck bits.
- A write operation clear all the stuck bits in a given block.
- <u>SEU</u>
- During W/R/R 10 blocks test condition, these errors could be either read errors or write errors and correspond to 0->1 or 1->0 transitions.
- During R/R operation, idem read errors only.
- These errors very likely occurred inside the data transfer page register.

– DUT responses observed (2/2)

- <u>Page /Block error</u>
- These errors correspond to a complete page / Block with all bits read/written in error.
- Depending of the device type, these errors can occur inside the block addressed or in an other block
- <u>Array error</u>
- The complete array is in error (> 10^6 words errors)
- <u>Max time erase</u>
- <u>Max time write</u>
- Erase Error (detected by the DUT itself)
- Write Error (detected by the DUT itself)
- <u>Latch-up</u>

Results per device

K9F1208U0M-YCB0 64Mx8

- First stuck bit errors (0->1) detected at an LET of 34 MeV/(mg/cm²) (Krypton, Tilt 0 deg)
- Device sensitive to Latch-up at an LET of 34MeV/(mg/cm²), (Krypton, Tilt 0 deg)
- <u>W/R/R 10 blocks test configuration</u>
 - First page / block error at an LET of of 8.3 MeV/(mg/cm²) (Neon, Tilt 45 deg)
 - All these page / block errors were detected after beam exposure **outside** the blocks which were addressed during exposure
 - First SEUs detected at an LET of 8.3 MeV/(mg/cm²) (Neon, Tilt 45 deg)
 - Either Read SEUs or Write SEUs, SEU device error cross-section between 5 10^{-5} cm² and 5 10^{-4} cm²

K9F5608U0A-YCB0 32Mx8

- First stuck bit errors (0->1) detected at an LET of 11.7 MeV/(mg/cm²) (Neon, Tilt 60 deg)
- <u>W/R/R 10 blocks test configuration</u>
 - No page / Block error detected up to an LET of 28.2 MeV/(mg/cm²) (Argon, Tilt 60 deg) inside (during exposure) or outside (post exposure) the 10 blocks.
 - Write and Erase errors (DUT control signals) detected at LET of 28.2 MeV/(mg/cm²) (Argon, Tilt 60 deg)
 - First SEUs detected during at an LET of 5.8 MeV/(mg/cm²) (Neon, Tilt 0 deg)
 - Either Read SEUs or Write SEUs, SEU device error cross-section between 5 10⁻⁵ cm² and 5 10⁻⁴ cm²

K9F2808U0M-YCB0 16Mx8

- First stuck bit errors (0->1) detected at an LET of 34 MeV/(mg/cm²) (Krypton, Tilt 0 deg)
- <u>W/R/R 10 blocks test configuration</u>
 - First SEUs detected during at an LET of 5.8 MeV/(mg/cm²) (Neon, Tilt 0 deg)
 - Either Read SEUs or Write SEUs, SEU device error cross-section between 5 10⁻⁵ cm² and 5 10⁻⁴ cm²
 - 2 Erase errors (DUT control signals) detected at LET of 11.7 MeV/(mg/cm²) (Neon, Tilt 60 deg)
 - First page / block errors at an LET of of 28.2 MeV/(mg/cm²) (Argon, Tilt 60 deg) (one read and one write) under exposure (within the 10 blocks)
 - No page / block errors were detected under beam exposure **outside** the blocks which were addressed during exposure
- <u>Page R/R test configuration</u>
 - With Krypton, LET= $34 \text{ MeV}/(\text{mg/cm}^2)$
 - SEUs Read errors and occurrence of stuck bits are observed.
 - Occurrence of 3 full memory array errors (into 3 different runs), two times memory has recovered at the next read cycle, a third time the device need to be reprogrammed.

K9F6408U0A-TCB0 8Mx8

- <u>W/R/R 10 blocks test configuration</u>
 - First SEUs detected at an LET of 5.8 MeV/(mg/cm²) (Neon, Tilt 0 deg)
 - Either Read SEUs or Write SEUs, SEU device error cross-section between 5 10⁻⁵ cm² and 5 10⁻⁴ cm²
 - First page / block error at an LET of of 5.8 MeV/(mg/cm²) (Neon, Tilt 0 deg) (one page write) under exposure (within the 10 blocks)
 - No page / block errors were detected after beam exposure **outside** the blocks which were addressed during exposure
 - First Max time write errors (DUT control signals) observed with an LET of 14.1 MeV/(mg/cm²) (Argon, Tilt 0 deg)

K9F6408U0B-TCB0 8Mx8

- No stuck bit errors (0->1) detected up to an LET of 34 MeV/(mg/cm²) (Krypton, Tilt 0 deg)
- <u>W/R/R 10 blocks test configuration</u>
 - First SEUs detected during at an LET of 5.8 MeV/(mg/cm²) (Neon, Tilt 0 deg)
 - Either Read SEUs or Write SEUs, SEU device error cross-section between 5 10⁻⁵ cm² and 5 10⁻⁴ cm²
 - First page / block error at an LET of of 34 MeV/(mg/cm²) (Krypton, Tilt 0 deg) (one page read) under exposure (within the 10 blocks)
 - No page / block errors were detected under beam exposure **outside** the blocks which were addressed during exposure
 - One erase error (DUT control signals) observed at an LET of of 28 MeV/(mg/cm²) (Argon, Tilt 60 deg)
- <u>Page R/R test configuration</u>
 - With Krypton, LET= 34 MeV/(mg/cm^2)
 - SEUs Read errors.
 - Page / block errors (few page read errors)

TC58256FT 32Mx8

- Few stuck bit errors (0->1) detected at an LET of 55.9 MeV/(mg/cm²) (Xenon, Tilt 0 deg) (power off test condition)
- W/R/R 10 blocks test configuration
 - First page / block error observed at an LET of of 11.7 MeV/(mg/cm²) (Neon, Tilt 60 deg) (one block erased) after exposure (**outside** the 10 blocks) while no error was detected under exposure.
 - First SEUs detected during at an LET of 14.1 MeV/(mg/cm²) (Argon, Tilt 0 deg)
 - Either Read SEUs or Write SEUs, SEU device error cross-section between 5 10⁻⁵ cm² and 5 10⁻⁴ cm²

Conclusion

- Evaluation has been carried out on 6 different part types
- Several Flash test configurations have been experimented and the corresponding errors detected, have been identified.
- From the devices tested, the major concern is bound to the errors generated in the control part of the device, as for instance erasing of a different block than the block being addressed.
- Large variations in the responses of the different part types suggest that a test on the devices considered for a specific project should be performed to fully characterize the device responses to heavy ions