Proton and Gamma Irradiation Response Characterisation of NMRC RADFETs

D/TOS-QCA Final Presentation Day 2002 ESA/ESTEC, Noordwijik, 109/04/2002

Aleksandar Jaksic, Research Scientist Devices and Systems for Dosimetry Transducers Group, NMRC, Ireland

Outline:

- Where do I come from?
- Where have I been during the last 33.5 years?
- Last ESA sponsored RADFET contract (overview)
- Co-60 and proton irradiation results and discussion
- New vehicle for RADFET response characterisation
- Future work

Where do I come from?

Ireland

Cork

Where have I been in the last 33.5 years?

- Born 15/10/1968 in Nis, Serbia, Yugoslavia
- Faculty of Electronic Engineering, University of Nis
 - 1987-1993: Undergraduate studies
 - 1994-2000: Post-graduate studies (Masters plus PhD)
- NMRC, Ireland, Transducers Group, Sep 2000 ?
 - Research Scientist, coordinator of RADFET related activities
- Research interests:
 - Radiation dosimetry (RADFETs)
 - Radiation effects in MOS devices: basic mechanisms
 - Radiation effects in MOS devices: characterisation
- Research results (publications):
 - 15 papers in refereed international journals

Last ESA sponsored RADFET contract:

- Part of the ESTEC Frame Contract with NMRC
- Contract No.:10582/93/NL/PB; WO No.: 06
- Start date: July 2000
- Duration: one year
- Description of work (work-packages):
 - Supply of RADFETs (including gamma-ray characterisation)
 - Energetic particle RADFET response (proton irradiations)
 - BIOPAN support
 - Improved stacked device
 - High range / high sensitivity RADFET configuration

RADFET operating principle:

- Radiation creates electron-hole pairs
- Initial recombination of electrons and holes happens
- Non-recombined electrons leave the oxide; holes are trapped in the vicinity of the oxide/silicon interface
- RADFET threshold voltage (V_T) changes ($\Delta V_T \sim Dose$)

RADFET biasing configurations:

- <u>Irradiation (sense mode)</u>: zero current; (B, S and D grounded); G can be:
 - Grounded ($V_{IRR}=V_{GS}=0V$) (config. 1)
 - Biased (typically $V_{IRR}=V_{GS}>0$) (config. 2)

<u>Read-out mode:</u> specified current applied to S=B; G=D grounded

• Irradiation (sense mode) and Read-out mode are the same (config. 3)

ESAPMOS4 RADFET chip:

- Chip size: 1mm x 1mm
- Contains four RADFETs:
 - two 300/50 devices
 - two 690/15 devices
- Chip types (gate oxide):
 - 100 nm
 - 400 nm
 - 400 nm Implanted (IMPL)

Co-60 data (300/50):

Sensitivity (mV/rad):

Dose (rad)\V _{irr}	V _{irr} =-5V	V _{irr} =0V	V _{irr} =+5V
100	0.28	0.82	1.56
1000	0.26	0.72	1.46
5000	0.22	0.50	1.27

- Very good agreement with previous (ESAPMOS2) results
- Very small variations between the samples (< 3%)
- Sensitivity for $V_{IRR}=V_{GS}<0$ is higher than for $V_{IRR}=0$
- 690/15 RADFETs have 2-3% lower sensitivity than 300/50 ones

Proton vs. Co-60 data for V_{IRR}=0:

Proton vs. Co-60 data for V_{IRR} =+5V:

Summary of proton data at different energies:

Summary of proton results:

- Discrepancies between proton and Co data
- Energetic dependence of proton response: - $\Delta V_T(10 \text{MeV p}) < \Delta V_T(Co) < \Delta V_T(300 \text{MeV p}) < \Delta V_T(60 \text{MeV p})$
- Response of 300/50 devices somewhat higher than response of 690/15 devices (as for Co-60)
- The presence of package significantly enhances the response and its energetic dependence
- Irradiation bias V_{IRR} has only a quantitative effect
- Variations between the samples bigger than in the case of Co-60 irradiation

Possible reasons for discrepancies:

- Experimental uncertainties:
 - RADFET read-out error
 - Proton beam non-uniformity
- Variations in dose enhancement between Co and p:
 - package lid effect evident
 - also back-scattering from die attach pad (?)
- Increased/decreased electron-hole recombination:
 - different contributions of columnar and geminate recomb.
- Different contribution of non-ionising energy transfer (displacement damage)
- Different energies needed for electron-hole recomb.

Evidence of p-beam non-uniformity (?):

- inset gives the location of six chips
- beam centre is marked with "X"
- · de-lidded samples are underlined

Vehicle for RADFET characterisation:

RADFET Reader Board system:

- PC (running LabVIEW software)
- Data acquisition card (NI DP 1200)
- RADFET Reader Control Board
- RADFET Socket Board

- User friendly, completely automated, computer-controlled system
- Enables on-line monitoring of RADFET V_T and the temperature
- Up to 10 RADFET chips (40 RADFETs) can be monitored simultaneously
- Independent choice of three RADFET biasing configurations (irradiation):
 - $V_{IRR}=0$ (zero current), (2) $V_{IRR}>0$ (zero current), continuous current

RRCB and RSB (detailed look):

RADFET Reader Control Board (RRCB)

RADFET Socket Board (RSB)

Future work:

- Detailed characterisation of gamma-ray response:
 - Verifying relevant RADFET pre-irradiation parameters
 - Testing RADFET Reader Board system in practice
 - Detailed calibration measurements in all configurations using RRB system
- Detailed characterisation of proton response:
 - Theoretical considerations
 - Numerical simulations
 - Comprehensive irradiation experiments

