

an EADS joint Company with BAE SYSTEMS

Ole Pedersen

Astrium GmbH D-81663 Munich Tel. ++49-89-607-20763 Fax ++49-89-607-23039 E-mail: Ole.Pedersen@astrium-space.com

Results of SEL Testing Performed on Selected Components used in PCDF & MSL Equipments for ISS

ESA-QCA Day, Noordwijk 09.04.2002

SUMMARY

- **1** General Information
- 2 **ISS-PCDF** Equipment
- 3 **ISS-MSL** Equipment
- 4 Test Result Summary and Remarks
- 5 Acknowledgment

GENERAL INFORMATION

O. Pedersen / ESA-QCA Day, Noordwijk 09.04.2002

© Astrium

GENERAL INFORMATION (1)

SCOPE:

- □ <u>Single Event Latch-up (SEL) testing on selected components used in equipments and experiments for International Space Station (ISS)</u>
- □ Minimum project SEL LET_{eff} threshold of 36 MeV cm²/mg
- □ Further major test goals
 - \Rightarrow Testing up to at least twice the SEL threshold requirement
 - ⇒ Where applicable other effects like SEB, SEGR should be detected and analysed
 - \Rightarrow Two components of each selected part type should be tested
 - \Rightarrow Application conditions or "worst case" bias should be applied
 - \Rightarrow Test candidate harmonizing between parts in various ISS equipments
- Irradiation test facility
 - \Rightarrow ESA <u>Heavy</u> Ion Test <u>Facility</u> (HIF) at UCL, Belgium
 - O. Pedersen / ESA-QCA Day, Noordwijk 09.04.2002

GENERAL INFORMATION (2)

ISS EQUIPMENT COMPRISED:

- **D** PCDF:
 - \Rightarrow EEE Parts Lists supplied by
 - Chevalier Photonics for components used in ISS/COF
 - Papst for components used in fans
- □ MSL:
 - \Rightarrow EEE Parts Lists supplied by
 - Astrium Space Infrastructure Division for components used in CAM equipment of MSL

GENERAL INFORMATION (3)

WORK STRUCTURE:

- Phase 1 involved
 - \Rightarrow Review and analysis of EEE parts lists to identify all SEL sensitive parts
 - ⇒ Identification and selection of test candidates with subsequent approval of project and ESA
- Phase 2 involved
 - \Rightarrow Preparation and approval of Test Plan and test hardware development
- Phase 3 involved
 - \Rightarrow SEL testing using ESA HIF at UCL
- Phase 4 involved
 - \Rightarrow Summary of test results and reporting
 - O. Pedersen / ESA-QCA Day, Noordwijk 09.04.2002

ISS-PCDF EQUIPMENT

Results of SEL Testing Performed on Selected Components used in PCDF & MSL Equipments for ISS

O. Pedersen / ESA-QCA Day, Noordwijk 09.04.2002

© Astrium

ISS-PCDF EQUIPMENT (1)

ISS-PCDF COMPONENT PARTS SELECTION:

Component Parts Lists

- \Rightarrow 3 parts lists supplied from Chevalier Photonics
- \Rightarrow 2 parts lists supplied from Papst
- □ Identified components types
 - \Rightarrow 30 component types identified as potentially sensitive to SEL
 - 9 component types had SEL LET_{eff} threshold data >36 MeV cm²/mg
 - 3 component types were later identified as not SEL sensitive (based upon information and correspondence with manufacturer)
 - 18 component types finally selected for SEL testing
- □ PCDF Review Report, REP-002, Issue 1 of 17.11.2000

ISS-PCDF EQUIPMENT (2)

□ ISS-PCDF SEL irradiated part types:

- JANTXV2N6782
- JANTXV2N6845
- SNJ55ALS194J
- SNJ55ALS195J
- LT1086MH/883
- AS5C4008F-25
- AD822AR
- AD9816JS
- M55310/28-B11A
- MIC4452BM
- 54ACTQ04LMQB
- 54FCT245T
- JD54F38BCA
- 54HCT04
- AD620SQ

10

- LM2991J-QML
- DG406AK/883
- LM117H/883

N-Channel HEXFET P-Channel HEXEET I ine Driver Line Receiver **Positive Voltage Regulator** 512K x 8 SRAM **FET Input Operational Amplifier** 12-bit Digital Signal Processor 20 MHz Oscillator CMOS MOSFET Driver **CMOS Hex Inverter** 8-bit Bus Transceiver NAND Buffer Driver Hex Inverter **Operational Amplifier** Voltage Regulator 16-ch. CMOS Analog Multiplexer

Voltage Regulator

Intersil International Rectifier Texas Instruments Texas Instruments Linear Technology Austin Semiconductor Analog Devices Analog Devices Corning Frequency Control, Inc. Micrel Semiconductor National Semiconductor Integrated Device Technology National Semiconductor **Texas Instruments** Analog Devices National Semiconductor Siliconix

National Semiconductor

ISS-MSL EQUIPMENT

Results of SEL Testing Performed on Selected Components used in PCDF & MSL Equipments for ISS

11 O. Pedersen / ESA-QCA Day, Noordwijk 09.04.2002

© Astrium

ISS-MSL EQUIPMENT (1)

ISS-MSL COMPONENT PARTS SELECTION:

- Component Parts Lists
 - \Rightarrow 15 parts lists supplied from Astrium Space Infrastructure Division
- □ Identified components types
 - \Rightarrow 89 component types identified as potentially sensitive to SEL
 - 9 component types had SEL LET_{eff} threshold data >36 MeV cm²/mg
 - 28 component types were assessed to have a possible SEL LET threshold < 36 MeV cm²/mg
 - 20 component types finally selected for SEL testing
- □ MSL Assessment Report, REP-001, Issue 1 of 06.07.2000

ISS-MSL EQUIPMENT (2)

□ ISS-MSL SEL irradiated part types:

- SAB80C166M
- ST62C65CB6
- LMC6062/883
- LMC662AIN
- TLC272BCP
- LT1298IN8
- MAX538BEPA
- FM93C56EN
- TL7705ACP
- PIC16-F84-04I/P
- MAX328CJE
- AD7228ACQ
- AD7846AQ
- 80C196KC-20
- DS1225Y-200
- COM20020IP
- PSD301-B-90JI
- K6T1008C2E-DB70
- LMC6482AMJ/883
- ICM7555MJA

13

16-bit CMOS Microcontroller 8-bit CMOS Microcontroller **CMOS** Operational Amplifier **CMOS** Operational Amplifier **CMOS** Operational Amplifier 12-bit ADC 12-bit DAC **2K CMOS EEPROM Bipolar Voltage Supervisor** 8-bit CMOS Microcontroller 8-ch. CMOS Analog Multiplexer 8-bit BiCMOS DAC 16-bit BiCMOS DAC 16-bit CMOS Microcontroller 64K CMOS SRAM 8-bit CMOS LAN Controller **CMOS** Programmable Peripheral **1M CMOS SRAM CMOS** Operational Amplifier

CMOS Analog Timer

Infineon STM National Semiconductor National Semiconductor Texas Instruments Linear Technology Maxim Fairchild **Texas Instruments** Microchip Technology Maxim Analog Devices **Analog Devices** Intel Dallas Standard Microsysteme Wafer Scale Integration Samsung National Semiconductor Maxim

TEST RESULT SUMMARY AND REMARKS

Results of SEL Testing Performed on Selected Components used in PCDF & MSL Equipments for ISS

O. Pedersen / ESA-QCA Day, Noordwijk 09.04.2002

TEST RESULT SUMMARY AND REMARKS (1)

ISS-PCDF TEST RESULT SUMMARY:

- 18 component types tested between an SEL LET_{eff} range of 5.85 and 73 MeV cm²/mg
- Test results
 - \Rightarrow 14 types had an SEL LET_{eff} threshold >73 MeV cm²/mg
 - ⇒ 1 type (LT1086) showed SEL at 34 MeV cm²/mg but not at 28.2 MeV cm²/mg
 - ⇒ 2 types (AD9816, LM117) showed SEL at 14.1 MeV cm²/mg but not at 9.1 MeV cm²/mg
 - ⇒ 1 type (LM2991) showed SEL at 5.85 MeV cm²/mg which was the lowest LET_{eff} used

TEST RESULT SUMMARY AND REMARKS (2)

ISS-MSL TEST RESULT SUMMARY:

- 20 component types tested between an SEL LET_{eff} range of 5.85 and 73 MeV cm²/mg
- Test results

- \Rightarrow 11 types had an SEL LET_{eff} threshold >73 MeV cm²/mg
- ⇒ 1 type (DS1225Y) showed SEL at 34 MeV cm²/mg but not at 14.1 MeV cm²/mg. Note: High supply current prevented reliable data
- ⇒ 1 type (PSD301) showed SEL at 28.2 MeV cm²/mg but not at 19.9 MeV cm²/mg
- ⇒ 1 type (80C196) showed SEL at 19.9 MeV cm²/mg but not at 14.1 MeV cm²/mg

TEST RESULT SUMMARY AND REMARKS (3)

- □ ISS-MSL Test results (cont.)
 - ⇒ 5 types (SAB80C166, ST62C65, FM93C56, PIC16-F84, COM20020IP) showed SEL at 14.1 MeV cm²/mg but not at 9.1 MeV cm²/mg
 - ⇒ 1 type (LTC1298) showed SEL at 9.1 MeV cm²/mg but not at 5.85 MeV cm²/mg
- □ At an LET_{eff} of 5.85 MeV cm²/mg no SEL was detected at any part type

TEST RESULT SUMMARY AND REMARKS (4)

TEST RESULT REMARKS:

- □ 38 component types, mostly of COTS quality, have been SEL tested
 - \Rightarrow 25 types passed project SEL requirements, i.e. LET_{eff} threshold of 36 MeV cm²/mg or greater
 - \Rightarrow 13 types (34%) failed the relatively low project SEL requirement
 - ⇒ 9 types showed very sensitive results, i.e. LET_{eff} threshold of 14.1 MeV cm²/mg or below
- Possible reasons for poor results
 - \Rightarrow Unknown technology, quality and performance for COTS
 - ⇒ Equipment manufacturers inexperience w.r.t. space radiation requirements
 - \Rightarrow Use of existing equipment designs not intended for space usage
 - O. Pedersen / ESA-QCA Day, Noordwijk 09.04.2002

TEST RESULT SUMMARY AND REMARKS (5)

TEST RESULT REMARKS (cont.):

- Possible consequences of poor results
 - \Rightarrow Component replacement
 - \Rightarrow Circuit / equipment redesign (latch-up protection, etc.)
 - \Rightarrow Significant project delays and cost increase
 - \Rightarrow Reduction of circuit / equipment performance
- Possible improvements
 - \Rightarrow Use of known radiation tolerant components
 - ⇒ Involvement of radiation expertise at an early project phase should be mandatory

TEST RESULT SUMMARY AND REMARKS (6)

REPORT REFERENCES:

- PCDF
 - ⇒ Irradiation Test Report, ITR_926_01_1.pdf, Issue 1 of 19.07.2001
 - ⇒ Irradiation Test Plan, ITP_01_01_1A.pdf, Issue 1A of 03.05.2001
- MSL
 - ⇒ Irradiation Test Report, ITR_927_01_1.pdf, Issue 1 of 22.10.2001
 - \Rightarrow Irradiation Test Plan, ITP_02_01_1A.pdf, Issue 1A of 07.09.2001
- □ All test reports are available at ESA-QCA

ACKNOWLEDGMENT

Results of SEL Testing Performed on Selected Components used in PCDF & MSL Equipments for ISS

ASTRIUM GmbH would like to acknowledge the support of

- ESA D/TOS-QCA, in particular Mr. Reno Harboe Sorensen, for technical support and provision of UCL ESA HIF time slot allocations
- UCL, in particular Mr. G. Berger, for support and (flexible) provision of beam time and manpower

