

Delta Evaluation of Advanced MMIC Process OMMIC D01PH and characterization under H₂ and ambient atmosphere

ESA Contract N°A3296/99/NL/MV

Marie Geneviève Périchaud OMMIC – France mg.perichaud@ommic.com

ESTEC - Noordwijk, The Netherlands

INITIAL TEST PROGRAM

2

Initial test program of the Delta Evaluation OMMIC D01PH process

Phase A: Reliability evaluation of the D01PH process

- Storage tests: 250°C, 285°C
- Endurance tests (biasing + high temperature): 150°C, 200°C

Phase B: D01PH process evaluation under specific atmosphere

- Test under Hydrogen atmosphere
- Test under Humid atmosphere: 85°C/85%RH

INITIAL TEST PROGRAM PHASE B

TECHNOLOGY CHARACTERISATION VEHICLE (TCV)

5

Die size: 2mm x 2mm

2 wafers coming from 2 different batches

ESTEC MGP 18.05.04

TCV die:

- 4x50µm on-transistors
- metal interconnections
- air bridges
- capacitors
- diodes

Package: Dual In Line (DIL48)

DIL48 Package	Size (cm ³)	
Cavity	0.78 x 0.78 x 0.1	
Package	6.1 x 1.55 x 0.21	

DYNAMIC EVALUATION CIRCUIT (DEC)

N-on PHEMT (4X25µm)

Die size : 420 x 650 μm²

2 wafers coming from 2 different batches

Schematic of the DEC

Package: FO92

Package size : 0.18 x 0.18 x 0.04 cm³

PHASE A: PRELIMINARY TESTS

Objective:

To check that TCV dice mounted in hermetically sealed packages and dedicated to the storage & endurance tests programmed in the phase A will not present Hydrogen signature during the tests

To obtain reliability data of D01PH processed dice

Tests performed:

285°C high temperature storage tests, 100h

Tests structures used:

TCV dice mounted in hermetically sealed DIL48 packages

TCV pattern controlled :

4x50µm FET parameters

PHASE A: PRELIMINARY RESULTS

Hermetically sealed TCV results: Evolution of FET I_{DSS} parameter under 285°C high temperature storage

I_{DSS} maximum variation (in absolute value) : 30% Hydrogen poisoning signature in all the tested TCVs

Comparison between Hermetically sealed TCV results and opened TCV results

Hermetically sealed TCV I_{DSS} maximum variation : 30%

Opened TCV I_{DSS} maximum variation : 5%

MODIFIED DELTA EVALUATION TEST PROGRAM PHASES A & B

Modified test program Phase A

Objectives:

- D01PH process reliability data purchase under storage tests (250°C, 285°C)
- D01PH process reliability evaluation under endurance tests (150°C and 200°C channel temperatures)

(Test structures : opened DIL48 packages and opened FO92 packages)

Modified test program Phase B

Objectives:

- To find an efficient solution to prevent H₂ poisoning on TCV dice hermetically sealed in DIL48 packages
- Reliability evaluation of D01PH TCV dice mounted in hermetically sealed DIL48 package
- Reliability evaluation of D01PH TCV dice in a humid atmosphere: 85°C/85%RH (Test structures: opened DIL48 packages)

MODIFIED DELTA EVALUATION TEST PROGRAM PHASES A & B

MODIFIED DELTA EVALUATION TEST PROGRAM PHASES A & B

Storage tests results

- TCV (mounted in opened DIL48 packages) stored at 250°C during 2016h
- TCV (mounted in opened DIL48 packages) stored at 285°C during 1008h

Endurance tests results

- DEC (mounted in opened and sealed FO92 packages) stored under biasing at 150°C channel temperature during 4032h
- DEC (mounted in opened and sealed FO92 packages) stored under biasing at 200°C during 4032h

Storage tests results: TCV electrical characterisation

Pattern	Measured Parameter	Description & measurements conditions	
GP/IN & GP/IN/TIN metal interco.	R_GP/IN R_GP/IN/TIN	Resistor (15 Ω) ; $I_{max} = 12 \text{ mA}$	
TE / IN metal interco.	R_TE/IN	Resistor (17.5 Ω); $I_{max} = 10 \text{ mA}$	
Air bridge (AB 20)	R_AB_20	Resistor (0.5^{Ω})	
Air bridge (AB 30)	R_AB_30	Resistor (0.3^{Ω})	
Air bridge (AB / IN)	R_AB_IN	Resistor (6.51 Ω); $I_{max} = 18 \text{ mA}$	
Air bridge (AB / IN / TIN)	R_AB_IN_TIN	Resistor (3 Ω); $I_{max} = 36 \text{ mA}$	
Si ₃ N ₄ capacitor	I_{leak} Si_3N_4	Leakage current at V = +15V	
Si ₃ N ₄ / SiO ₂ capacitor	I_{leak} SiO ₂	Leakage current at V = +15V	
Schockley pattern	RCN	Contact resistance at I _{max} = 2.5mA	
NiCr resistor	R_NiCr	Resistor (100 Ω) ; $I_{max} = 10 \text{ mA}$	
IN/TIN metal line	R_IN_TIN	Resistor (2.5 Ω); $I_{max} = 36 \text{ mA}$	
Transistor N-on	$V_{\rm p}$	Pinch-off voltage : I _{ds} = 1μA/μm, V _{ds} = 1.5V	
	gm₀	Transconductance : V _{ds} = 1.5V, V _{gs} = 0V	
	$I_{ m dss}$	Drain-source current : V _{gs} = 0V, V _{ds} = 1.5V	
	V_{brgss}	Break down voltage : I _{gs} = 1μΑ/μm V _{ds} = 0V	
BE diode	V_{fwd}	Threshold voltage : V for I _{forward} = 1µA/µm	
	V_{BR}	Breakdown voltage : I _g = 1μA/μm, V _{ds} = 0V	
	l _{rev}	Leakage current : maximum rating < -9V	

Storage tests results : TCV failure criteria*

Patterns	Failure	Criteria
FET Parameters	I _{DSS}	-10%
	V_P	+10%
	V _{BGD0} & V _{BGS0}	-10%
Metallic Resistors		+10%
Metal Interconnections		+20%

^{*} Values coming from: "A methodology for the space qualification of GaAs MMICs", 3rd issue, CNET - 1992

Storage tests results: 2016h at 250°C

Whatever the wafer studied:

- No change in passive elements after 2016h of tests
- FET parameters : no failure (catastrophic or by drift) has been noticed

Storage tests results: 1008h at 285°C

- The first failures appear for the FET parameters after 500h of storage
- The failed FET parameter during 285°C storage tests are :
 - I_{DSS}
 - V_{BRGSS}

250°C & 285°C storage tests results : I_{DSS} parameter - 04479198HC Wafer

250°C TCV storage test: 2016h

285°C TCV storage test: 1008h

250°C & 285°C storage tests results : I_{DSS} parameter - 05168208HC Wafer

250°C TCV storage test: 2016h

285°C TCV storage test: 1008h

Reliability data calculated from storage tests at 250°C & 285°C:

Activation Energy (E_A)

Measured Parameter	Activation energy associated (E _A)	
4x50μm On-Transistor	$E_A = 1.2 \text{ eV}$ (calculated from the I _{DSS} variation during storage tests at 250°C & 285°C)	
GP / IN metal interconnection	E _A = 1.8 eV	
GP/IN/TIN metal interconnection	E _A = 1.8 eV	
Air bridge (AB / IN / TIN)	E _A = 1.4 eV	
Si₃N₄ capacitor	E _A = 1.3 eV	
Si ₃ N ₄ / SiO ₂ capacitor	E _A = 1.2 eV	
Schockley pattern	E _A > 1.1 eV	
NiCr resistor	E _A = 1.9 eV	
IN/TIN metal line	E _A = 1.3. eV	

The <u>1.2 eV activation energy</u> calculated for the 4x50µm FET corresponds to a <u>median life in excess of 2.10⁸ years in ambient conditions</u>

Endurance tests results : DEC biasing conditions & DEC electrical characterisation

- Biasing conditions :
 - Pinch off voltage : V_P at $I_{DS} = 1$ mA/mm & $V_{DS} = 1.5$ V
 - Drain-Source current : I_{DSS} at $V_{GS} = 0V \& V_{DS} = 1.5V$
 - Minimum noise figure : NF $_{\rm MIN}$ at F = 12 GHz, V $_{\rm DS}$ = 3V & V $_{\rm GS}$ tuned for I $_{\rm DS}$ = 1/3 I $_{\rm DSS}$

DEC electrical characterisation :

Parameter	Measurements conditions
V_p	Pinch-off voltage : $I_{ds} = 1 \text{mA/mm}$, $V_{ds} = 1.5 \text{V}$
l _{dss}	Drain-source current : $V_{gs} = 0V$, $V_{ds} = 1.5V$
V_{brgss}	Break down voltage : $1\mu A/\mu m$, $V_{ds} = 0V$
NF min	Minimum noise figure : $V_{ds} = 3V$, V_{gs} tuned for $I_{ds} = 1/3$ I_{dss} at 12 or 18 GHz
Ga	Associated gain : measurements conditions similar to NF min

Endurance tests results:

 Endurance tests have been performed on opened DECs & hermetically sealed DECs

• DEC failure criteria*

Patterns	Failure	Criteria
FET Parameters	I _{DSS}	-10%
	V_{P}	+10%
	V_{BGD0} & V_{BGS0}	-10%
	NFmin at 12GHz	+0.5dB
	Associated Gain	5dB
	at 12GHz	

^{*} Values coming from : "A methodology for the space qualification of GaAs MMICs", 3rd issue, CNET - 1992

Endurance tests results: 4032h at 150°C & 200°C channel temperature

DEC tested in opened packages :

 No failure (catastrophic or by drift) has been noticed on all the DEC parameters checked after 4032h of endurance tests

DEC tested in hermetically sealed FO92 packages :

- \bullet Sudden drift failures (in the range of 25% 30% for the I_{DSS} & V_P parameters) have been noticed on 5 DECs during the endurance tests
- These failure are not linked to one particular biasing or to one specific endurance temperature but are clearly the signature of the dice Hydrogen poisoning

150°C & 200°C Endurance tests results : I_{DSS} parameter

DEC I_{DSS} parameter – Sealed package 150°C & 200°C endurance tests 04479198HC & 05168208HC Wafers All biasing conditions merged

A Member of the Philips Group of Companies

PHASE A: CONCLUSION

250°C & 285°C Storage tests results:

- The results obtained on TCVs stored at 250°C & 285°C showed that the activation energy of the tested elements varies between 1.2eV & 1.8eV
- The lower activation energy (1.2eV) has been calculated for the 4x50µm on-transistor I_{DSS} parameter and corresponds to a median life in excess of 2.10⁸ years in ambient conditions

150°C & 200°C Endurance tests results:

- Some DEC samples tested in hermetically sealed FO92 packages exhibited a degradation by "Hydrogen poisoning" due to the presence of H₂ inside the package
- All DEC samples mounted in open packages successfully passed 4032h of endurance tests without any degradation whatever the temperature and the biasing conditions used

Test program phase B:

- 1. Reliability evaluation of D01PH processed TCV dice hermetically sealed in DIL48 package
 - 1.A : Tests performed to define an efficient solution to prevent H₂ poisoning in TCV dice hermetically sealed in DIL48 packages :
 - DIL48 package out-gassing : test of different high temperature and different bake-out time
 - Efficiency evaluation of 2 types of Hydrogen getters
 - 1.B : Storage test results of hermetically TCV sealed in DIL48 package : 1000h at 175°C & 1000h at 250°C
- 2. Reliability evaluation of D01PH processed TCV dice in a humid atmosphere
 - Test of TCV dice (biased or no biased) mounted in opened packages at 85°C/85%RH during 1000h

1.A : Tests performed to define an efficient solution to prevent H₂ poisoning in TCV dice hermetically sealed in DIL48 packages :

- ➤ Influence of the temperature on H₂ removal efficiency: test of 3 high temperature out-gassing conditions
 - 24h at 175°C under vacuum (40 mTorr)
 - 24h at 225°C under vacuum
 - 24h at 275°C under vacuum
- ➤ Influence of the bake-out time on H₂ removal efficiency: test of 3 outgassing conditions
 - 48h at 250°C under vacuum
 - 96h at 250°C under vacuum
 - 168h at 250°C under vacuum
- ➤ Efficiency assessment: Residual Gas Analysis (RGA) associated with fine and gross leak tests

Influence of the <u>temperature</u> on H₂ removal efficiency:
Tests description

<u>Influence of the temperature on H₂ removal efficiency</u>: RGA Results

DIL48 out-gassing conditions	DIL48 storage conditions	RGA results : % of H ₂
	Ambient	0.27%
No out-gassing	48h @ 285°C	4.01%
	168h @285°C	3.94%
	Ambient	0.37%
24h @ 175°C under vacuum	48h @ 285°C	4.4%
	168h @285°C	3.57%
	Ambient	0.4%
24h @ 225°C under vacuum	48h @ 285°C	4.38%
	168h @285°C	3.87%
	Ambient	0.22%
24h @ 275°C under vacuum	48h @ 285°C	4.75%
	168h @285°C	3.6%

- DIL48 packages stored at high temperature : ≈ 4% of H₂
- DIL48 packages stored at ambient temperature : ≈ 0.4% of H₂

24h vacuum out-gassing conditions up to 275°C have no effect for removing H₂ trapped in DIL48 package material

Influence of the bake-out time on H₂ removal efficiency: Tests description

<u>Influence of the bake-out time on H₂ removal efficiency</u>: RGA Results

DIL48 out-gassing conditions	DIL48 storage conditions	RGA results : % of H ₂
48h @ 250°C under vacuum	No storage	0.45%
	168h @285°C	4.02%
96h @ 250°C under vacuum	No storage	0.48%
	168h @285°C	3.46%
168h @ 250°C under vacuum	No storage	0.35%
	168h @285°C	3.6%

- DIL48 packages stored at high temperature : \approx 4% of H_2
- DIL48 packages stored at ambient temperature : ≈ 0.4% of H₂

24h at 275°C and 168h at 250°C do not remove all the H₂ trapped in DIL48 packages

1.B: Hydrogen getter efficiency results

- 2 hydrogen getters tested : Polymer based getter & Palladium getter
- Dimensions: 6mm x 6mm x 0.2mm

Polymer Based getter attached to the lid (H2-3000 Cookson Product)

Palladium getter attached to the lid (Hi-Rel Product)

Storage tests: 1000 h at 250°C

- D01PH processed TCV dice encapsulated in hermetically sealed DIL48 packages with a Polymer based getter attached to the lid
- D01PH processed TCV dice encapsulated in hermetically sealed DIL48 packages with a Palladium getter attached to the lid
- Use of non out-gassed DIL48 packages

Storage tests: 1000 h at 250°C

- > All TCV Patterns controlled :
 - As expected, no change in passive elements after 1000 hours
 - The most sensitive parameter to H₂ poisoning are :
 - $-I_{DSS}, V_{P}$
 - 4x50µm transistor parameters presented below

Storage tests: I_{DSS} parameter results

TCV hermetically sealed in a DIL48 package with a **polymer based getter** attached to the lid

$$\Delta I_{DSSmax} = -11\%$$

TCV hermetically sealed in a DIL48 package with a **Palladium getter** attached to the lid

$$\Delta I_{DSSmax} = -40\%$$

Storage tests: V_P parameter results

$$\Delta V_{Pmax} = 0.08V$$

TCV hermetically sealed in a DIL48 package with a **Palladium getter** attached to the lid

$$\Delta V_{Pmax} = 0.25V$$

The tests performed to define an efficient solution to prevent H₂ poisoning in TCV dice hermetically sealed in DIL48 packages show that :

- ➤ The different DIL48 package out-gassing conditions tested have no effect on the Hydrogen removal, whatever the high temperature (175°C, 225°C, 250°C & 275°C) and the bake-out time tested (24h, 48h, 96h & 168h)
- ➤ The Polymer based getter is a good solution to efficiently absorb Hydrogen trapped in DIL48 packages while the Palladium getter is not a successful solution

1.B : Storage test results of hermetically TCV sealed in DIL48 package with a polymer based getter attached to the lid : 1000h at 175°C & 1000h at 250°C

- > All TCV Patterns controlled
- ➤ As expected, no change in passive elements has been noticed after 1000h at 175°C and 1000h at 250°C
- > FET parameters : no failure (catastrophic or by drift) has been noticed whatever the wafer studied and the storage performed

175°C & 250°C storage tests results : I_{DSS} parameter - 04479198HC Wafer

TCV hermetically sealed in a DIL48 package with a

Polymer Based getter attached to the lid

$$\Delta I_{DSSmax} = -9\%$$

175°C & 250°C storage tests results : I_{DSS} parameter - 05168208HC Wafer

TCV hermetically sealed in a DIL48 package with a

Polymer Based getter attached to the lid

$$\Delta I_{DSSmax} = -9\%$$

- All the D01PH processed TCV dice encapsulated in hermetically sealed DIL48 packages with a H2-3000 polymer based getter attached to the lid successfully passed 1000h of storage tests without any degradation whatever the temperature used (175°C and 250°C)
- These results have to be confirmed by performing high temperature storage tests on MMICs hermetically sealed in specific packages with the same polymer based getter attached to the lid
- The same storage tests have now to be performed on ED02AH TCV dice hermetically sealed in DIL48 package with a getter attached to the lid in order to validate the solution proposed to prevent Hydrogen poisoning when using OMMIC processed dice

2 : Reliability evaluation of D01PH processed TCV dice in a humid atmosphere :

- 3 humidity test series have been performed :
 - 857h at 85°C/85%RH
 - 1121h at 85°C/85%RH
 - 1143h at 85°C/85%RH
- > Test vehicles tested: TCV dice, coming from 2 different wafers, biased or no biased and mounted in opened packages
- Biasing conditions for the 4x50µm on-transistor :
 - I_{DSS} at $V_{GS} = 0V \& V_{DS} = 1.5V$

(Resistors, capacitors and diodes have not been biased during the tests)

> The humidity tests have been carried out at ESTEC

Humidity test results: TCV electrical characterisation

Pattern	Measured Parameter	Description & measurements conditions
GP/IN & GP/IN/TIN metal interco.	R_GP/IN R_GP/IN/TIN	Resistor (15 Ω) ; I _{max} = 12 mA
TE / IN metal interco.	R_TE/IN	Resistor (17.5 Ω); $I_{max} = 10 \text{ mA}$
Air bridge (AB 20)	R_AB_20	Resistor (0.5^{Ω})
Air bridge (AB 30)	R_AB_30	Resistor (0.3^{Ω})
Air bridge (AB / IN)	R_AB_IN	Resistor (6.51 Ω); $I_{max} = 18 \text{ mA}$
Air bridge (AB / IN / TIN)	R_AB_IN_TIN	Resistor (3 Ω); $I_{max} = 36 \text{ mA}$
Si ₃ N ₄ capacitor	I_{leak} Si_3N_4	Leakage current at V = +15V
Si ₃ N ₄ / SiO ₂ capacitor	I_{leak} SiO ₂	Leakage current at V = +15V
Schockley pattern	RCN	Contact resistance at I _{max} = 2.5mA
NiCr resistor	R_NiCr	Resistor (100 Ω) ; $I_{max} = 10 \text{ mA}$
IN/TIN metal line	R_IN_TIN	Resistor (2.5 Ω); $I_{max} = 36 \text{ mA}$
Transistor N-on	V_p	Pinch-off voltage : I _{ds} = 1μΑ/μm, V _{ds} = 1.5V
	gm₀	Transconductance : V _{ds} = 1.5V, V _{gs} = 0V
	l _{dss}	Drain-source current : V _{gs} = 0V, V _{ds} = 1.5V
	V_{brgss}	Break down voltage : I _{gs} = 1μΑ/μm V _{ds} = 0V
BE diode	V_{fwd}	Threshold voltage : V for I _{forward} = 1μΑ/μm
	V_{BR}	Breakdown voltage : I _g = 1μΑ/μm, V _{ds} = 0V
	I _{rev}	Leakage current : maximum rating < -9V

Humidity test results

- ➤ Whatever the 1000h of humidity tests performed and whatever the wafer studied, no change has been noticed on :
 - the interconnections, the resistors, the air bridges
 - the Si₃N₄ capacitors
 - the 4x100µm BE Diodes
- > Failures appear during the humidity tests for :
 - Si_3N_4 + SiO_2 capacitors
 - FET parameter : V_P

Typical Si₃N₄ + SiO₂ capacitors failure

Capacitor leakage current increased by more than 100% after the 1000h of humidity tests

SEM analysis of failed Si₃N₄ + SiO₂

Typical FET failure

Catastrophic degradation of the $V_{\rm P}$ parameter after the 1000h of humidity tests

SEM analysis of failed transistors

Failure due to a defective capacitor located between the transistor gate and the ground

CONCLUSION: PHASE A

Test program phase A: 250°C & 285°C Storage tests results

- The results obtained on opened TCVs stored at 250°C & 285°C showed a good reliability: the activation energy of the tested elements varies between 1.2eV & 1.8eV
- The lower activation energy (1.2eV) has been calculated for the 4x50µm on-transistor I_{DSS} parameter and corresponds to a median life in excess of 2.10⁸ years in ambient conditions

Test program phase A: 150°C & 200°C Endurance tests results

- Some DEC samples tested in hermetically sealed FO92 packages exhibited a degradation by "Hydrogen poisoning" due to the presence of H₂ inside the package
- All DEC samples mounted in open packages successfully passed 4032h of endurance tests without any degradation whatever the temperature and the biasing conditions used

CONCLUSION: PHASE B

Test program phase B: Hydrogen getter efficiency

- ➤ The methods tested to prevent Hydrogen poisoning in DIL48 hermetically sealed package show that :
 - the out-gassing conditions tested are not an efficient solution to remove the Hydrogen trapped in the package material
 - the H2-3000 polymer based getter is a good solution to prevent Hydrogen poisoning in D01PH processed dice
- More experiments have to be performed :
 - to evaluate the efficiency of such a polymer-based getter on ED02AH processed dice mounted in DIL48 package
 - to evaluate the efficiency of the H2-3000 polymer based getter on MMIC (using D01PH or ED02AH process) encapsulated in specific packages
 - to test getters from other suppliers

CONCLUSION: PHASE B

Test program phase B : Humidity test results

- > From 85°C/85%RH 1000h humidity tests, it appears :
 - Only MIM capacitors are sensitive to moisture
 - No degradation is observed for active devices
- > FIB analysis to determine where the defect has been initiated in the MIM capacitor