INTEGRATED CIRCUITS, SILICON MONOLITHIC,
CMOS SILICON GATE, STATIC 64K (4096 × 16 BIT)
DUAL PORT MEMORY
WITH 3-STATE OUTPUTS,
BASED ON TYPE M67024EV

ESA/SCC Detail Specification No. 9301/034

space components
coordination group

<table>
<thead>
<tr>
<th>Issue/Rev.</th>
<th>Date</th>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue 1</td>
<td>June 1995</td>
<td>SCCG Chairman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESA Director General</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or his Deputy</td>
</tr>
</tbody>
</table>
DOCUMENTATION CHANGE NOTICE

<table>
<thead>
<tr>
<th>Rev. Letter</th>
<th>Rev. Date</th>
<th>Reference</th>
<th>CHANGE Item</th>
<th>Approved DCR No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

1. **GENERAL**
 - 1.1 Scope
 - 1.2 Component Type Variants
 - 1.3 Maximum Ratings
 - 1.4 Parameter Derating Information
 - 1.5 Physical Dimensions
 - 1.6 Pin Assignment
 - 1.7 Truth Table
 - 1.8 Circuit Description
 - 1.9 Functional Diagram
 - 1.10 Handling Precautions
 - 1.11 Input Protection Network

2. **APPLICABLE DOCUMENTS**

3. **TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS**

4. **REQUIREMENTS**
 - 4.1 General
 - 4.2 Deviations from Generic Specification
 - 4.2.1 Deviations from Special In-process Controls
 - 4.2.2 Deviations from Final Production Tests
 - 4.2.3 Deviations from Burn-in Tests
 - 4.2.4 Deviations from Qualification Tests
 - 4.2.5 Deviations from Lot Acceptance Tests
 - 4.3 Mechanical Requirements
 - 4.3.1 Dimension Check
 - 4.3.2 Weight
 - 4.4 Materials and Finishes
 - 4.4.1 Case
 - 4.4.2 Lead Material and Finish
 - 4.5 Marking
 - 4.5.1 General
 - 4.5.2 Lead Identification
 - 4.5.3 The SCC Component Number
 - 4.5.4 Traceability Information
 - 4.6 Electrical Measurements
 - 4.6.1 Electrical Measurements at Room Temperature
 - 4.6.2 Electrical Measurements at High and Low Temperatures
 - 4.6.3 Circuits for Electrical Measurements
 - 4.7 Burn-in Tests
 - 4.7.1 Parameter Drift Values
 - 4.7.2 Conditions for High Temperature Reverse Bias Burn-in
 - 4.7.3 Conditions for Power Burn-in
 - 4.7.4 Electrical Circuits for High Temperature Reverse Bias Burn-in
 - 4.7.5 Electrical Circuits for Power Burn-in
 - 4.8 Environmental and Endurance Tests
 - 4.8.1 Electrical Measurements on Completion of Environmental Tests
 - 4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests
 - 4.8.3 Electrical Measurements on Completion of Endurance Tests
 - 4.8.4 Conditions for Operating Life Tests

Page

5
27
27
28
4.8.5 Electrical Circuits for Operating Life Tests
4.8.6 Conditions for High Temperature Storage Test
4.9 Total Dose Irradiation Testing
4.9.1 Application
4.9.2 Bias Conditions
4.9.3 Electrical Measurements

TABLES

1(a) Type Variants
1(b) Maximum Ratings
2 Electrical Measurements at Room Temperature - d.c. Parameters
2 Electrical Measurements at Room Temperature - a.c. Parameters
3 Electrical Measurements at High and Low Temperatures - d.c. Parameters
3 Electrical Measurements at High and Low Temperatures - a.c. Parameters
4 Parameter Drift Values
5(a) Conditions for High Temperature Reverse Bias Burn-in
5(b) Conditions for Power Burn-in and Operating Life Tests
6 Electrical Measurements on Completion of Environmental Tests and at Intermediate Points
and on Completion of Endurance Testing
7 Electrical Measurements During and on Completion of Irradiation Testing

FIGURES

1 Not applicable
2 Physical Dimensions
3(a) Pin Assignment
3(b) Truth Table
3(c) Circuit Description
3(d) Functional Diagram
3(e) Input Protection Networks
4 Circuits for Electrical Measurements
5(a) Electrical Circuit for High Temperature Reverse Bias Burn-in
5(b) Electrical Circuit for Power Burn-in and Operating Life Tests
6 Bias Conditions for Irradiation Testing

APPENDICES (Applicable to specific Manufacturers only)
'A' AGREED DEVIATIONS FOR MATRA-MHS (F)

REFERENCES (Other Manufacturers)

N/A
1. GENERAL

1.1 SCOPE
This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon, monolithic, CMOS Silicon Gate, Static, 64k (4096 x 16 BIT) Dual Port Memory with 3-State Outputs, based on Type M67024EV. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 COMPONENT TYPE VARIANTS
Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS
The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

1.4 PARAMETER DERATING INFORMATION (FIGURE 1)
Not applicable.

1.5 PHYSICAL DIMENSIONS
As per Figure 2.

1.6 PIN ASSIGNMENT
As per Figure 3(a).

1.7 TRUTH TABLE
As per Figure 3(b).

1.8 CIRCUIT DESCRIPTION
As per Figure 3(c).

1.9 FUNCTIONAL DIAGRAM
As per Figure 3(d).

1.10 HANDLING PRECAUTIONS
These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are categorised as Class 1 with a Minimum Critical Path Failure Voltage of 1000 Volts.

1.11 INPUT PROTECTION NETWORK
Double transistor protection shall be incorporated into each input as shown in Figure 3(e).
TABLE 1(a) - TYPE VARIANTS

<table>
<thead>
<tr>
<th>VARIANT</th>
<th>BASED ON TYPE</th>
<th>CASE</th>
<th>FIGURE</th>
<th>LEAD MATERIAL AND/OR FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>M67024EV-45</td>
<td>FLAT PACK</td>
<td>2(a)</td>
<td>G2</td>
</tr>
<tr>
<td>02</td>
<td>M67024EV-45</td>
<td>CHIP CARRIER</td>
<td>2(b)</td>
<td>2</td>
</tr>
<tr>
<td>03</td>
<td>M67024EV-55</td>
<td>FLAT PACK</td>
<td>2(a)</td>
<td>G2</td>
</tr>
<tr>
<td>04</td>
<td>M67024EV-55</td>
<td>CHIP CARRIER</td>
<td>2(b)</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE 1(b) - MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>MAXIMUM RATINGS</th>
<th>UNIT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td>-0.3 to $+7.0$</td>
<td>V</td>
<td>Note 1</td>
</tr>
<tr>
<td>2</td>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td>-0.3 to $V_{DD} + 0.3$</td>
<td>V</td>
<td>Note 2 Power On</td>
</tr>
<tr>
<td>3</td>
<td>Output Current</td>
<td>$\pm I_{OUT}$</td>
<td>$V_{OUT} = V_{DD}$: $+140$</td>
<td>mA</td>
<td>Note 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{OUT} = V_{SS}$: -90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Device Dissipation</td>
<td>P_D</td>
<td>2200</td>
<td>mW</td>
<td>Per Package</td>
</tr>
<tr>
<td></td>
<td>(Continuous)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Operating Temperature</td>
<td>T_{op}</td>
<td>-55 to $+125$</td>
<td>°C</td>
<td>T_{amb}</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-65 to $+150$</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Soldering Temperature</td>
<td>T_{sol}</td>
<td>$+265$</td>
<td>°C</td>
<td>Note 4 Note 5</td>
</tr>
<tr>
<td></td>
<td>For FP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For CCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Thermal Resistance</td>
<td>$R_{TH(J-A)}$</td>
<td>18</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Junction Temperature</td>
<td>T_J</td>
<td>$+165$</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. Device is functional from $+4.5V$ to $+5.5V$ with reference to Ground.
2. $V_{DD} + 0.3V$ should not exceed $+7.0V$.
3. The maximum output current of any single output.
4. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.
5. Duration 5 seconds maximum and the same terminal shall not be resoldered until 3 minutes have elapsed.

FIGURE 1 - PARAMETER DERATING INFORMATION

Not applicable.
FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - FLAT PACKAGE, 84-PIN

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MILLIMETERS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN.</td>
<td>MAX.</td>
</tr>
<tr>
<td>A</td>
<td>2.05</td>
<td>2.89</td>
</tr>
<tr>
<td>A1</td>
<td>1.82</td>
<td>2.67</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>0.356</td>
</tr>
<tr>
<td>b</td>
<td>0.457 TYPICAL</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>0.22</td>
<td>0.31</td>
</tr>
<tr>
<td>D</td>
<td>48.77</td>
<td>50.28</td>
</tr>
<tr>
<td>D1</td>
<td>28.96</td>
<td>29.46</td>
</tr>
<tr>
<td>e</td>
<td>1.27 TYPICAL</td>
<td>2, 4</td>
</tr>
<tr>
<td>L</td>
<td>8.84</td>
<td>11.43</td>
</tr>
</tbody>
</table>

NOTES: See Page 9.
FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - CHIP CARRIER PACKAGE, 84-TERMINAL

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MILLIMETRES</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>A</td>
<td>1.83</td>
<td>2.23</td>
</tr>
<tr>
<td>A1</td>
<td>2.23</td>
<td>2.64</td>
</tr>
<tr>
<td>B</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.14</td>
<td>1.40</td>
</tr>
<tr>
<td>C1</td>
<td>2.20</td>
<td>2.72</td>
</tr>
<tr>
<td>D</td>
<td>28.90</td>
<td>29.59</td>
</tr>
<tr>
<td>D1</td>
<td>17.50</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>28.90</td>
<td>29.59</td>
</tr>
<tr>
<td>E1</td>
<td>17.50</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>h, h1</td>
<td>1.016</td>
<td></td>
</tr>
<tr>
<td>j, j1</td>
<td>0.51</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: See Page 9.
FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURES 2(a) TO 2(b) INCLUSIVE

1. Index area: a notch, letter or dot shall be located adjacent to Pin 1 and shall be within the shaded area shown. For chip carrier packages the index shall be as defined in Figure 2(b).

2. The true position pin or terminal spacing is 1.27mm between centrelines. Each pin or terminal centreline shall be located within 0.13mm of its true longitudinal position relative to Pin 1 and the highest pin number.

3. All leads or terminals.

4. 76 spaces.

5. 3 non-index corners - 6 dimensions.

6. Index corner only - 2 dimensions.
FIGURE 3(a) - PIN ASSIGNMENT

FLAT AND CHIP CARRIER PACKAGES

TOP VIEW

PIN DESCRIPTION

<table>
<thead>
<tr>
<th>PIN No.</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>15</td>
<td>I/O11L</td>
<td>29</td>
<td>I/O5R</td>
<td>43</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>OE</td>
<td>16</td>
<td>I/O12L</td>
<td>30</td>
<td>I/O6R</td>
<td>44</td>
<td>SEMR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>I/O0L</td>
<td>17</td>
<td>I/O13L</td>
<td>31</td>
<td>I/O7R</td>
<td>45</td>
<td>CSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>I/O1L</td>
<td>18</td>
<td>GND</td>
<td>32</td>
<td>I/O8R</td>
<td>46</td>
<td>UBR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>19</td>
<td>I/O14L</td>
<td>33</td>
<td>I/O9R</td>
<td>47</td>
<td>LB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I/O2L</td>
<td>20</td>
<td>I/O15L</td>
<td>34</td>
<td>I/O10R</td>
<td>48</td>
<td>N.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>I/O3L</td>
<td>21</td>
<td>VDD</td>
<td>35</td>
<td>I/O11R</td>
<td>49</td>
<td>A11R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>I/O4L</td>
<td>22</td>
<td>GND</td>
<td>36</td>
<td>I/O12R</td>
<td>50</td>
<td>A10R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>I/O5L</td>
<td>23</td>
<td>I/O0R</td>
<td>37</td>
<td>I/O13R</td>
<td>51</td>
<td>A9R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>I/O6L</td>
<td>24</td>
<td>I/O1R</td>
<td>38</td>
<td>I/O14R</td>
<td>52</td>
<td>A8R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>I/O7L</td>
<td>25</td>
<td>I/O2R</td>
<td>39</td>
<td>GND</td>
<td>53</td>
<td>A7R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>I/O8L</td>
<td>26</td>
<td>VDD</td>
<td>40</td>
<td>I/O15R</td>
<td>54</td>
<td>A6R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>I/O9L</td>
<td>27</td>
<td>I/O3R</td>
<td>41</td>
<td>EO</td>
<td>55</td>
<td>A5R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>I/O10L</td>
<td>28</td>
<td>I/O4R</td>
<td>42</td>
<td>R/W</td>
<td>56</td>
<td>A4R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 3(a) - PIN ASSIGNMENT (CONTINUED)

PIN DESCRIPTION (CONTINUED)

<table>
<thead>
<tr>
<th>PIN No.</th>
<th>FUNCTION</th>
<th>PIN No.</th>
<th>FUNCTION</th>
<th>PIN No.</th>
<th>FUNCTION</th>
<th>PIN No.</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>A<sub>3R</sub></td>
<td>64</td>
<td>GND</td>
<td>71</td>
<td>A<sub>4L</sub></td>
<td>78</td>
<td>A<sub>11L</sub></td>
</tr>
<tr>
<td>58</td>
<td>A<sub>2R</sub></td>
<td>65</td>
<td>BUSY<sub>L</sub></td>
<td>72</td>
<td>A<sub>5L</sub></td>
<td>79</td>
<td>N.C.</td>
</tr>
<tr>
<td>59</td>
<td>A<sub>1R</sub></td>
<td>66</td>
<td>INT<sub>L</sub></td>
<td>73</td>
<td>A<sub>6L</sub></td>
<td>80</td>
<td>LB<sub>L</sub></td>
</tr>
<tr>
<td>60</td>
<td>A<sub>0R</sub></td>
<td>67</td>
<td>A<sub>0L</sub></td>
<td>74</td>
<td>A<sub>7L</sub></td>
<td>81</td>
<td>UB<sub>L</sub></td>
</tr>
<tr>
<td>61</td>
<td>INT<sub>R</sub></td>
<td>68</td>
<td>A<sub>1L</sub></td>
<td>75</td>
<td>A<sub>8L</sub></td>
<td>82</td>
<td>CS<sub>L</sub></td>
</tr>
<tr>
<td>62</td>
<td>BUSY<sub>R</sub></td>
<td>69</td>
<td>A<sub>2L</sub></td>
<td>76</td>
<td>A<sub>9L</sub></td>
<td>83</td>
<td>SEM<sub>L</sub></td>
</tr>
<tr>
<td>63</td>
<td>M/S</td>
<td>70</td>
<td>A<sub>3L</sub></td>
<td>77</td>
<td>A<sub>10L</sub></td>
<td>84</td>
<td>R/W<sub>L</sub></td>
</tr>
</tbody>
</table>

NOTES

<table>
<thead>
<tr>
<th>LEFT PORT</th>
<th>RIGHT PORT</th>
<th>NAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS<sub>L</sub></td>
<td>CS<sub>R</sub></td>
<td>Chip Select</td>
</tr>
<tr>
<td>R/W<sub>L</sub></td>
<td>R/W<sub>R</sub></td>
<td>Read/Write Enable</td>
</tr>
<tr>
<td>OE<sub>L</sub></td>
<td>OE<sub>R</sub></td>
<td>Output Enable</td>
</tr>
<tr>
<td>A<sub>0L</sub> - A<sub>11L</sub></td>
<td>A<sub>0R</sub> - A<sub>11R</sub></td>
<td>Address</td>
</tr>
<tr>
<td>I/O<sub>0L</sub> - I/O<sub>15L</sub></td>
<td>I/O<sub>0R</sub> - I/O<sub>15R</sub></td>
<td>Data Input/Output</td>
</tr>
<tr>
<td>SEM<sub>L</sub></td>
<td>SEM<sub>R</sub></td>
<td>Semaphore Enable</td>
</tr>
<tr>
<td>UB<sub>L</sub></td>
<td>UB<sub>R</sub></td>
<td>Upper Byte Select</td>
</tr>
<tr>
<td>LB<sub>L</sub></td>
<td>LB<sub>R</sub></td>
<td>Lower Byte Select</td>
</tr>
<tr>
<td>INT<sub>L</sub></td>
<td>INT<sub>R</sub></td>
<td>Interrupt Flag</td>
</tr>
<tr>
<td>BUSY<sub>L</sub></td>
<td>BUSY<sub>R</sub></td>
<td>Busy Flag</td>
</tr>
<tr>
<td>M/S</td>
<td></td>
<td>Master or Slave Select</td>
</tr>
<tr>
<td>V<sub>DD</sub></td>
<td></td>
<td>Power</td>
</tr>
<tr>
<td>GND</td>
<td></td>
<td>Ground</td>
</tr>
</tbody>
</table>
FIGURE 3(b) - TRUTH TABLES

GENERAL NOTES
1. Logic level Definitions: \(L = \text{Low Level}, \ H = \text{High Level}, \ Z = \text{High Impedance}, \ \checkmark = \text{Transition from Low to High Level}, \ X = \text{Irrelevant}, \ \text{NC} = \text{No Change}.

NON-CONTENTION READ/WRITE CONTROL

<table>
<thead>
<tr>
<th>INPUTS (1)</th>
<th>OUTPUTS</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CS})</td>
<td>(\text{R/W})</td>
<td>(\text{OE})</td>
</tr>
<tr>
<td>(H)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>(X)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>(L)</td>
<td>(L)</td>
<td>(X)</td>
</tr>
<tr>
<td>(L)</td>
<td>(L)</td>
<td>(X)</td>
</tr>
<tr>
<td>(L)</td>
<td>(L)</td>
<td>(X)</td>
</tr>
<tr>
<td>(L)</td>
<td>(H)</td>
<td>(L)</td>
</tr>
<tr>
<td>(L)</td>
<td>(H)</td>
<td>(L)</td>
</tr>
<tr>
<td>(L)</td>
<td>(H)</td>
<td>(L)</td>
</tr>
<tr>
<td>(X)</td>
<td>(X)</td>
<td>(H)</td>
</tr>
<tr>
<td>(H)</td>
<td>(H)</td>
<td>(L)</td>
</tr>
<tr>
<td>(X)</td>
<td>(H)</td>
<td>(L)</td>
</tr>
<tr>
<td>(H)</td>
<td>(\checkmark)</td>
<td>(X)</td>
</tr>
<tr>
<td>(X)</td>
<td>(\checkmark)</td>
<td>(X)</td>
</tr>
<tr>
<td>(L)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>(L)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
</tbody>
</table>

NOTES
1. \(A_{0L-A_{11L}} \neq A_{0R-A_{11R}} \).

INTERRUPT FLAG (NOTE 1)

<table>
<thead>
<tr>
<th>LEFT PORT</th>
<th>RIGHT PORT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{R/W}_L)</td>
<td>(\text{CS}_L)</td>
<td>(\text{OE}_L)</td>
</tr>
<tr>
<td>(L)</td>
<td>(L)</td>
<td>(X)</td>
</tr>
<tr>
<td>(X)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>(X)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
<tr>
<td>(X)</td>
<td>(L)</td>
<td>(L)</td>
</tr>
</tbody>
</table>

NOTES
1. Assumes \(\text{BUSY}_L = \text{BUSY}_R = H \).
2. If \(\text{BUSY}_L = L \), then NC.
3. If \(\text{BUSY}_R = L \), then NC.
FIGURE 3(b) - TRUTH TABLES (CONTINUED)

ARBITRATION OPTIONS

<table>
<thead>
<tr>
<th>OPTIONS</th>
<th>INPUTS</th>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CS</td>
<td>ÜB</td>
</tr>
<tr>
<td>Busy Logic Master</td>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Busy Logic Slave</td>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>Interrupt Logic</td>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>Semaphore Logic (1)</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTES

1. Input Signals are for Semaphore Flags set and test (Write and Read) operations.

ARBITRATION

<table>
<thead>
<tr>
<th>LEFT PORT</th>
<th>RIGHT PORT</th>
<th>FLAGS (1)</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS<sub>L</sub></td>
<td>A<sub>0L</sub>-A<sub>11L</sub></td>
<td>CS<sub>R</sub></td>
<td>A<sub>0R</sub>-A<sub>11R</sub></td>
</tr>
<tr>
<td>H</td>
<td>X</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>Any</td>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
<td>L</td>
<td>Any</td>
</tr>
<tr>
<td>L</td>
<td>?<sub>0R</sub>-A<sub>11R</sub></td>
<td>L</td>
<td>?<sub>0L</sub>-A<sub>11L</sub></td>
</tr>
</tbody>
</table>

ADDRESS ARBITRATION WITH CS LOW BEFORE ADDRESS MATCH

<table>
<thead>
<tr>
<th></th>
<th>LV5R</th>
<th></th>
<th>LV5R</th>
<th>H</th>
<th>L</th>
<th>L-Port Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV5L</td>
<td>L</td>
<td>LV5L</td>
<td>L</td>
<td>H</td>
<td>R-Port Wins</td>
<td></td>
</tr>
<tr>
<td>Same</td>
<td>L</td>
<td>Same</td>
<td>H</td>
<td>L</td>
<td>Arbitration Resolved</td>
<td></td>
</tr>
<tr>
<td>Same</td>
<td>L</td>
<td>Same</td>
<td>L</td>
<td>H</td>
<td>Arbitration Resolved</td>
<td></td>
</tr>
</tbody>
</table>

CE ARBITRATION WITH ADDRESS MATCH BEFORE CS

LL5R	=_{0R}-A_{11R}	LL5R	=_{0L}-A_{11L}	H	L	L-Port Wins
RL5L	=_{0R}-A_{11R}	RL5L	=_{0L}-A_{11L}	L	H	R-Port Wins
LW5R	=_{0R}-A_{11R}	LW5R	=_{0L}-A_{11L}	H	L	Arbitration Resolved
LW5R	=_{0R}-A_{11R}	LW5R	=_{0L}-A_{11L}	L	H	Arbitration Resolved

NOTES

1. INT Flags: Don’t Care.
2. LV5R = Left Address Valid ≥ 5ns before right address.
 RV5L = Right Address Valid ≥ 5ns before left address.
 Same = Left and Right Addresses match within 5ns of each other.
 LL5R = Left CS = Low ≥ 5ns before Right CS.
 RL5L = Right CS = Low ≥ 5ns before Left CS.
 LW5R = Left and Right CS = Low within 5ns of each other.
FIGURE 3(b) - TRUTH TABLE

TIMING WAVEFORMS

READ CYCLE 1, EITHER SIDE (NOTES 1, 2, 4)

ADDRESS

\[t_{RC} \]

\[t_{IAA} \]

\[t_{OH} \]

\[t_{DH} \]

DATA\(_{OUT}\)

PREVIOUS DATA VALID

DATA VALID

READ CYCLE 2, EITHER SIDE (NOTES 1, 3, 5)

\[t_{SGP} \]

\[t_{ACS} \]

\[t_{ADE} \]

\[t_{HZ} \]

\[t_{LZ} \]

\[t_{PU} \]

\[t_{PD} \]

\[I_{DD} \]

\[I_{SS} \]

50%

50%

DATA\(_{OUT}\)

CURRENT

READ CYCLE 3, EITHER SIDE (NOTES 1, 3, 4, 5)

ADDRESS

\[t_{RC} \]

\[t_{IAA} \]

\[t_{SH} \]

\[t_{HZ} \]

\[t_{LZ} \]

\[t_{ABE} \]

\[t_{LZ} \]

\[t_{ACS} \]

DATA\(_{OUT}\)

NOTES

1. R/W is high for read cycles.
2. Device is continuously enabled, \(\overline{CS} = L \), \(\overline{UB} \) or \(\overline{LB} = L \). This waveform cannot be used for semaphore reads.
3. Addresses valid prior to or coincident with \(\overline{OE} \) transition low.
4. \(\overline{OE} = L \).
5. To access RAM, \(\overline{CS} = L \), \(\overline{UB} \) or \(\overline{LB} = L \), \(\overline{SEM} = H \). To access semaphore, \(\overline{CS} = H \), \(\overline{SEM} = L \). (See Non-contention Read/Write Control Truth Table).
FIGURE 3(b) - TRUTH TABLE (CONTINUED)

TIMING WAVEFORMS (CONTINUED)

WRITE CYCLE 1. R/W CONTROLLED TIMING (NOTES 1, 2, 3, 7)

ADDRESS

\[\overline{OE} \]

\[\overline{CS} \ (8) \ (9) \]

R/W

DATAOUT

DATAIN

\[t_{AW} \]

\[t_{AS} \]

\[t_{WP} \ (7) \]

\[t_{WR} \]

\[t_{HZ} \ (6) \]

\[t_{DW} \]

\[t_{OH} \]

\[t_{WS} \]

\[t_{WD} \]

\[t_{DH} \]

WRITE CYCLE 2. \(\overline{CS} \) CONTROLLED TIMING (NOTES 1, 2, 3, 5)

ADDRESS

\[\overline{CS} \ (8) \ (9) \]

R/W

DATAIN

\[t_{AW} \]

\[t_{AS} \]

\[t_{SW} \]

\[t_{WR} \]

\[t_{WD} \]

\[t_{OH} \]

\[t_{WS} \]

\[t_{DW} \]

NOTES
1. R/W must be high during all address transitions.
2. A write occurs during the overlap (\(t_{SW} \) or \(t_{WP} \)) of a low \(\overline{CS} \) or \(\overline{SEM} \) and a low R/W.
3. \(t_{WR} \) is measured from the earlier of CS or R/W (or SEM or R/W) going high to the end of the write cycle.
4. During this period, the I/O pins are in the output state, and input signals must not be applied.
5. If the \(\overline{CS} \) or \(\overline{SEM} \) low transition occurs simultaneously with or after the R/W low transition, the outputs remain in the high impedance state.
6. Transition is measured \(\pm 500\text{mV} \) from steady state with a 5.0pF load (including scope and jig).
7. If \(\overline{OE} \) is low during a R/W controlled write cycle, the write pulse width must be the larger of \(t_{WP} \) or \((t_{WZ} + t_{DW}) \) to allow the I/O drivers to turn off and data to be placed on the bus for the required \(t_{DW} \). If \(\overline{OE} \) is high during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified \(t_{WP} \).
8. To access RAM, \(CS = L, SEM = H \).
9. To access upper byte, \(CS = L, UB = L, SEM = H \).
 To access lower byte, \(CS = L, LB = L, SEM = H \).
FIGURE 3(b) - TRUTH TABLE (CONTINUED)

TIMING WAVEFORMS (CONTINUED)

READ WITH BUSY (NOTES 2, 3, 4)
(FOR MASTER 67024)

NOTES
1. To ensure that the earlier of the two ports wins.
2. Write cycle parameters should be adhered to, to ensure proper writing.
3. Device is continuously enabled for both ports.
4. $OE = L$ for the reading port.

WRITE WITH PORT-TO-PORT (NOTES 1, 2, 3)
(FOR SLAVE 67024 ONLY)

NOTES
1. Assume $BUSY$ input $= H$ for the writing port, and $OE = L$ for the reading port.
2. Write cycle parameters should be adhered to, to ensure proper writing.
3. Device is continuously enabled for both ports.
FIGURE 3(b) - TRUTH TABLE (CONTINUED)

WRITE WITH BUSY
(FOR SLAVE 67024)

R/W

BUSY

CONTENTION CYCLE 1, CS ARBITRATION
(FOR MASTER 67024 ONLY)

ADDR L AND R

ADDRESS MATCH

CS_L

CS_R

BUSY_R

ADDR L AND R

ADDRESS MATCH

CS_R

CS_L

BUSY_L
FIGURE 3(b) - TRUTH TABLE (CONTINUED)

TIMING WAVEFORMS (CONTINUED)

CONTENTION CYCLE 2, ADDRESS VALID ABRITRATION (NOTE 1)
(FOR MASTER 67024 ONLY)

LEFT ADDRESS VALID FIRST

\[
\text{ADDR}_L \quad \text{I}_{RC} \text{ OR } I_{WC} \quad \text{ADDRS MATCH} \quad \text{ADDRS DO NOT MATCH} \\
\text{ADDR}_R \quad I_{APS} \\
\overline{\text{BUSY}}_R \quad I_{BAA} \quad I_{BDA}
\]

RIGHT ADDRESS VALID FIRST

\[
\text{ADDR}_R \quad \text{I}_{RC} \text{ OR } I_{WC} \quad \text{ADDRS MATCH} \quad \text{ADDRS DO NOT MATCH} \\
\text{ADDR}_L \quad I_{APS} \\
\overline{\text{BUSY}}_L \quad I_{BAA} \quad I_{BDA}
\]

NOTES
1. $CS_L = CS_R = L$.
FIGURE 3(b) - TRUTH TABLE (CONTINUED)

TIMING WAVEFORMS (CONTINUED)

INTERRUPT TIMING (NOTE 1)

ADDR "A"

CS "A"

R/W "A"

INT "B"

ADDR "B"

CS "B"

OE "B"

INT "B"

NOTES
1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from "A".
2. See Interrupt Flag Truth Table.
3. Timing depends on which enable signal is asserted last.
4. Timing depends on which enable signal is de-asserted first.
FIGURE 3(b) - TRUTH TABLE (CONTINUED)

TIMING WAVEFORMS (CONTINUED)

SEMAPHORE READ AFTER WRITE TIMING, EITHER SIDE (NOTE 1)

NOTES
1. CS = H for the duration of the above timing (both write and read cycle).

SEMAPHORE CONTENTION (NOTES 1, 3, 4)

NOTES
1. \(D_{OR} = D_{OL} = L, \overline{CS}_R = \overline{CS}_L = H \), semaphore Flag is released from both sides (reads as ones from both sides) at cycle start.
2. Either side “A” = left and side “B” = right, or side “A” = right and side “B” = left.
3. This parameter is measured from the point where \(R/W_A \) or \(SEM_A \) goes high until \(R/W_B \) or \(SEM_B \) goes high.
4. If \(t_{SPS} \) is violated, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.
FUNCTIONAL DESCRIPTION

The M67024 has 2 ports with separate control, address and I/O pins that permit independent read/write access to any memory location. These devices have an automatic power-down feature controlled by \(\overline{CS} \). \(\overline{CS} \) controls on-chip power-down circuitry which causes the port concerned to go into stand-by mode when not selected (\(\overline{CS} \) high). When a port is selected, access to the full memory array is permitted. Each port has its own Output Enable control (\(\overline{OE} \)). In read mode, the port’s \(\overline{OE} \) turns the Output drivers on when set Low. Non-conflicting READ/WRITE conditions are illustrated in the Truth Table.

The interrupt flag (\(\overline{INT} \)) allows communication between ports or systems. If the User chooses to use the interrupt function, a memory location (mail box or message centre) is assigned to each port. The left port interrupt flag (\(\overline{INT}_L \)) is set when the right port writes to memory location FFE (HEX). The left port clears the interrupt by reading address location FFE. Similarly, the right port interrupt flag (\(\overline{INT}_R \)) is set when the left port writes to memory location FFF (HEX), and the right port must read memory location FFF in order to clear the interrupt flag (\(\overline{INT}_R \)). The 16 bit message at FFE or FFF is user-defined. If the interrupt function is not used, address locations FFE and FFF are not reserved for mail boxes but become part of the RAM. See the Truth Table for the interrupt function.

ARBITRATION LOGIC FUNCTIONAL DESCRIPTION

The arbitration logic will resolve an address match or a chip select match down to a minimum of 5.0ns and determine which port has access. In all cases, an active \(\overline{BUSY} \) flag will be set for the inhibited port.

The \(\overline{BUSY} \) flags are required when both ports attempt to access the same location simultaneously. Should this conflict arise, on-chip arbitration logic will determine which port has access and set the \(\overline{BUSY} \) flag for the inhibited port. \(\overline{BUSY} \) is set at speeds that allow the processor to hold the operation with its associated address and data. It should be noted that the operation is invalid for the port for which \(\overline{BUSY} \) is set LOW. The inhibited port will be given access when \(\overline{BUSY} \) goes inactive.

A conflict will occur when both left and right ports are active and the 2 addresses coincide. The on-chip arbitration determines access in these circumstances. 2 modes of arbitration are provided: (1) if the addresses match and are valid before \(\overline{CS} \) on-chip control logic arbitrates between \(\overline{CS}_L \) and \(\overline{CS}_R \) for access; or (2) if the \(\overline{CSs} \) are low before an address match, on-chip control logic arbitrates between the left and right addresses for access (see the Truth Table). The inhibited port’s \(\overline{BUSY} \) flag is set and will reset when the port granted access completes its operation in both arbitration modes.

DATA BUS WIDTH EXPANSION MASTER/SLAVE DESCRIPTION

Expanding the data bus width to 32 or more bits in a dual-port RAM system means that several chips may be active simultaneously. If every chip has a hardware arbitrator, and the addresses for each chip arrive at the same time, 1 chip may activate its \(\overline{L BUSY} \) signal while another activates its \(\overline{R BUSY} \) signal. Both sides are now busy and the CPUs will wait indefinitely for their port to become free.

To overcome this “Busy Lock-Out” problem, MHS has developed a MASTER/SLAVE system which uses a single hardware arbitrator located on the MASTER. The SLAVE has \(\overline{BUSY} \) inputs which allow direct interface to the MASTER with no external components, giving a speed advantage over other systems.

When dual-port RAMs are expanded in width, the SLAVE RAMs must be prevented from writing until after the \(\overline{BUSY} \) input has settled. Otherwise, the SLAVE chip may begin a write cycle during a conflict situation. Conversely, the write pulse must extend a hold time beyond \(\overline{BUSY} \) to ensure that a write cycle occurs once the conflict is resolved. This timing is inherent in all dual-port memory systems where more than 1 chip is active at the same time.
FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

The write pulse to the SLAVE must be inhibited by the MASTER's maximum arbitration time. If a conflict then occurs, the write to the SLAVE will be inhibited because of the MASTER's BUSY signal.

SEMAPHORE LOGIC FUNCTIONAL DESCRIPTION

The M67024 is an extremely fast dual-port 4k × 16 CMOS static RAM with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either of the processors on the left or right side of the dual-port RAM to claim priority over the other for functions defined by the system software. For example, the semaphore flag can be used by 1 processor to inhibit the other from accessing a portion of the dual-port RAM or any other shared resource.

The dual-port RAM has a fast access time, and the 2 ports are completely independent of one another. This means that the activity on the left port cannot slow the access time of the right port. The ports are identical in function to standard CMOS static RAMs and can be read from, or written to, at the same time with the only possible conflict arising from simultaneous writing to, or a simultaneous READ/WRITE operation on, a non-semaphore location. Semaphores are protected against such ambiguous situations and may be used by the system programme to prevent conflicts in the non-semaphore segment of the dual-port RAM. The devices have an automatic power-down feature controlled by CS, the dual-port RAM select and SEM, the semaphore enable. The CS and SEM pins control on-chip power-down circuitry that permits the port concerned to go into stand-by mode when not selected. This condition is shown in the Truth Table when CS and SEM are both high.

Systems best able to exploit the M67024 are based around multiple processors or controllers and are typically very high-speed, software controlled or software-intensive systems. These systems can benefit from the performance enhancement offered by the M67024 hardware semaphores, which provide a lock-out mechanism without the need for complex programming.

Software handshaking between processors offers the maximum level of system flexibility by permitting shared resources to be allocated in varying configurations. The M67024 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture.

An advantage of using semaphores rather than the more usual methods of hardware arbitration is that neither processor ever incurs wait states. This can prove a considerable advantage in very high speed systems.

HOW THE SEMAPHORE FLAGS WORK

The semaphore logic is a set of 8 latches independent of the dual-port RAM. These latches can be used to pass a flag or token from one port to the other to indicate that a shared resource is in use. The semaphores provide the hardware context for the "Token Passing Allocation" method of use assignment. This method uses the state of a semaphore latch as a token indicating that a shared resource is in use. If the left processor needs to use a resource, it requests the token by setting the latch. The processor then verifies that the latch has been set by reading it. If the latch has been set, the processor assumes control over the shared resource. If the latch has not been set, the left processor has established that the right processor had set the latch first, has the token and is using the shared resource. The left processor may then either repeatedly query the status of the semaphore, or abandon its request for the token and perform another operation whilst occasionally attempting to gain control of the token through a set and test operation. Once the right side has relinquished the token, the left side will be able to take control of the shared resource.

The semaphore flags are active low. A token is requested by writing a '0' to a semaphore latch, and is relinquished again when the same side writes a '1' to the latch.
FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

The 8 semaphore flags are located in a separate memory space from the dual-port RAM in the M67024. The address space is accessed by placing a low input on the SEM pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, OE and R/W) as normally used in accessing a standard static RAM. Each of the flags has a unique address accessed by either side through address pins A0-A2. None of the other address pins has any effect when accessing the semaphores. Only data pin D0 is used when writing to a semaphore. If a low level is written to an unused semaphore location, the flag will be set to '0' on that side and to '1' on the other side (see Semaphore Procurement Sequence Table). The semaphore can now only be modified by the side showing the '0'. Once a '1' is written to this location from the same side, the flag will be set to '1' for both sides (unless a request is pending from the other side) and the semaphore can then be written to by either side.

The effect the side writing to '0' to a semaphore location has of "locking-out" the other side is the reason for the use of semaphore logic in interprocessor communication. (A thorough discussion of the use of this feature follows below). A '0' written to the semaphore location from the locked-out side will be stored in the semaphore request latch for that side until the semaphore is relinquished by the side having control.

When a semaphore flag is read its value is distributed to all data bits so that a flag set at '1' reads as '1' in all data bits and a flag set at '0' reads as all '0'. The read value is latched into the output register of one side when its semaphore select (SEM) and output enable (OE) signals go active. This prevents the semaphore changing state in the middle of a read cycle as a result of a write cycle issued by the other side. Because of this latch, a repeated read of a semaphore flag in a test loop must cause either signal (SEM or OE) to go inactive, otherwise the output will never change.

The semaphore must use a WRITE/READ sequence in order to ensure that no system level conflict will occur. A processor requests access to shared resources by attempting to write a '0' to a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a '0', yet the semaphore flag will appear as a '1', and the processor will detect this status in the subsequent read (see Semaphore Procurement Sequence Table). For example, assume a processor writes a '0' to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource concerned. If a processor on the right side then attempts to write a '0' to the same semaphore flag it will fail, as will be verified by a subsequent read returning a '1' from the semaphore location on the right side.

It must be noted that a failed semaphore request needs to be followed by either repeated reads or by writing a '1' to the same location. The simple logic diagram for the semaphore flag illustrates the reason for this quite clearly. 2 semaphore request latches feed into a semaphore flag. The first latch to send a '0' to the semaphore flag will force its side of the semaphore flag low and the other side high. This status will be maintained until a '1' is written to the same semaphore request latch. Should a '0' be written to the other side's semaphore request latch in the meantime, the semaphore flag will flip over to this second side as soon as a '1' is written to the first side's request latch. The second side's flag will now stay low until its semaphore request latch is changed to a '1'. Thus, clearly, if a semaphore flag is requested and the processor requesting it no longer requires access to the resource, the entire system can hang up until a '1' is written to the semaphore request latch concerned.

Semaphore timing becomes critical when both sides request the same token by attempting to write a '0' to it at the same time. Semaphore logic is specially conceived to resolve this problem. The logic ensures that only one side will receive the token if simultaneous requests are made. The first side to make a request will receive the token where requests do not arrive at the same time. Where they do arrive at the same time, the logic will assign the token arbitrarily to one of the ports.
FIGURE 3(c) - CIRCUIT DESCRIPTION (CONTINUED)

It should be noted, however, that semaphores alone do not guarantee that access to a resource is secure. As with any powerful programming technique, errors can be introduced if semaphores are misused or misinterpreted. Code integrity is of the utmost performance when semaphores are being used instead of slower, more restrictive hardware-intensive systems.

Semaphore initialisation is not automatic and must therefore be incorporated in the power-up initialisation procedures. Since any semaphore flag containing a '0' must be reset to '1', initialisation should write a '1' to all request flags from both sides to ensure that they will be available when required.

USING SEMAPHORES - Some Examples

Perhaps the simplest application of semaphores is their use as resource markers for the M67024’s dual-port RAM. If it is necessary to split the 4k×16 RAM into two 2k×16 blocks which are to be dedicated to serving either the left or the right port at any one time. Semaphore 0 can be used to indicate which side is controlling the lower segment of memory and semaphore 1 can be defined as indicating the upper segment of memory.

To take control of a resource, in this case the lower 2k of a dual-port RAM, the left port processor would then write a '0' into semaphore flag 0 and then read it back. If successful in taking the token (reading back a '0' rather than a '1'), the left processor could then take control of the lower 2k of RAM. If the right processor attempts to perform the same function to take control of the resource after the left processor has already done so, it will read back a '1' in response to the attempted write of a '0' into semaphore 0. At this point, the software may choose to attempt to gain control of the second 2k segment of RAM by writing and then reading a '0' in semaphore 1. If successful, it will lock-out the left processor.

Once the left side has completed its task, it will write a '1' to semaphore 0 and may then attempt to access semaphore 1. If semaphore 1 is still occupied by the right side, the left side may abandon its semaphore request and perform other operations until it is able to write and then read a '0' in semaphore 1. If the right processor performs the same operation with semaphore 0, this protocol would then allow the 2 processors to swap 2k blocks of dual-port RAM between one another.

The blocks do not have to be any particular size, and may even be of variable size depending on the complexity of the software using the semaphore flags. All 8 semaphores could be used to divide the dual-port RAM or other shared resources into 8 parts. Semaphores can even be assigned different meanings on each side, rather than having a common meaning as is described in the above example.

Semaphores are a useful form of arbitration in systems such as disk interfaces where the CPU must be locked out of a segment of memory during a data transfer operation, and the I/O device cannot tolerate any wait states. If semaphores are used, both the CPU and the I/O device can access assigned memory segments, without the need for wait states, once the two devices have determined which memory area is barred to the CPU.

Semaphores are also useful in applications where no memory WAIT state is available on one or both sides. Once a semaphore handshake has been performed, both processors can access their assigned RAM segments at full speed.

Another application is in complex data structures. Block arbitration is very important in this case, since one processor may be responsible for building and updating a data structure whilst the other processor reads and interprets it. A major error condition may be created if the interpreting processor reads an incomplete data structure. Some sort of arbitration between the two different processors is therefore necessary. The building processor requests access to the block, locks it and is then able to enter the block to update the data structure. Once the update is completed the data structure may be released. This allows the interpreting processor to return to read the complete data structure, thus ensuring a consistent data structure.
FIGURE 3 - CIRCUIT DESCRIPTION (CONTINUED)

EXAMPLE SEMAPHORE PROCUREMENT SEQUENCE

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>$D_0 - D_{13}$ LEFT</th>
<th>$D_0 - D_{13}$ RIGHT</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>1</td>
<td>1</td>
<td>Semaphore free</td>
</tr>
<tr>
<td>Left Port Writes '0' to Semaphore</td>
<td>0</td>
<td>1</td>
<td>Left Port has semaphore token</td>
</tr>
<tr>
<td>Right Port Writes '0' to Semaphore</td>
<td>0</td>
<td>1</td>
<td>No change. Right side has no write access to semaphore</td>
</tr>
<tr>
<td>Left Port Writes '1' to Semaphore</td>
<td>1</td>
<td>0</td>
<td>Right port obtains semaphore token</td>
</tr>
<tr>
<td>Left Port Writes '0' to Semaphore</td>
<td>1</td>
<td>0</td>
<td>No change. Left port has no write access to semaphore</td>
</tr>
<tr>
<td>Right Port Writes '1' to Semaphore</td>
<td>0</td>
<td>1</td>
<td>Left port obtains semaphore token</td>
</tr>
<tr>
<td>Left Port Writes '1' to Semaphore</td>
<td>1</td>
<td>1</td>
<td>Semaphore free</td>
</tr>
<tr>
<td>Right Port Writes '0' to Semaphore</td>
<td>1</td>
<td>0</td>
<td>Right port has semaphore token</td>
</tr>
<tr>
<td>Left Port Writes '1' to Semaphore</td>
<td>1</td>
<td>1</td>
<td>Left port has semaphore token</td>
</tr>
</tbody>
</table>

NOTES

1. This table denotes a sequence of events for only 1 of the 8 semaphores on the M67024.

![Semaphore Logic Diagram](image)

32-BIT MASTER/SLAVE DUAL-PORT MEMORY SYSTEMS

![32-bit Memory System Diagram](image)

NOTES

1. No arbitration in M67024 (SLAVE). BUSY-IN inhibits write in M67024 SLAVE.
NOTES
1. (MASTER): BUSY is output. (SLAVE): BUSY is input.
2. LB = Lower Byte, UB = Upper Byte.

FIGURE 3(e) - INPUT/OUTPUT PROTECTION NETWORKS

EQUIVALENT OF EACH INPUT

EQUIVALENT OF EACH OUTPUT
2. **APPLICABLE DOCUMENTS**

The following documents form part of this specification and shall be read in conjunction with it:-

(a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
(b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. **TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS**

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following abbreviations are used:

- V_{IC} = Input Clamp Voltage.
- I_{DD1} = Average Power Supply Current.
- I_{DD2} = Average Standby Current.
- I_{DD3} = Power Down Current.
- I_{OZH} = Output Leakage Current Third State (High Level Applied).
- I_{OZL} = Output Leakage Current Third State (Low Level Applied).
- C_{IN} = Input Capacitance.
- C_{OUT} = Output Capacitance.
- t_{GAA} = BUSY Access Time to Address.
- t_{DA} = BUSY Disable Time to Address.
- t_{AC} = BUSY Access Time to Chip Select.
- t_{DC} = BUSY Disable Time to Chip Select.
- t_{WDDS} = Write Pulse to Data Delay (SLAVE).
- t_{DDD} = Write Data Valid to Read Data Delay (SLAVE).
- t_{APS} = Arbitration Priority Set-up Time.
- t_{BDD} = BUSY Disable to Valid Data.
- t_{WB} = Write to BUSY Input.
- t_{WH} = Write Hold After BUSY.
- t_{WDDM} = Write Pulse to Data Delay (MASTER).
- t_{DDD} = Write Data Valid to Read Data Delay (MASTER).
- t_{AS} = Address Set-up Time.
- t_{WR} = Write Recovery Time.
- t_{NS} = Interrupt Set Time.
- t_{NR} = Interrupt Reset Time.
- t_{WC} = Write Cycle Time.
- t_{SW} = Chip Select to End of Write.
- t_{AW} = Address Valid to End of Write.
- t_{AS} = Address Set-Up Time.
- t_{WP} = Write Pulse Width.
- t_{WR} = Write Recovery Time.
- t_{DW} = Data Valid to End of Write.
- t_{HZ} = Output High-Z Time.
- t_{OH} = Data Hold Time.
- t_{EWO} = Output Enable to Output in High-Z.
- t_{OW} = Output Active from End of Write.
- t_{SFRD} = SEM Flag Write to Read Time.
- t_{SPS} = SEM Flag Contention Window.
- t_{RC} = Read Cycle Time.
- t_{AA} = Address Access Time.
- t_{ACS} = Chip Select Access Time.
- t_{ABE} = Byte Enable Access Time.
- t_{OE} = Output Enable Access Time.
- t_{CH} = Output Hold from Access Change.
- t_{LZ} = Output Low-Z Time.
- t_{PU} = Chip Select to Power Up Time.
- t_{PD} = Chip Disable to Power Down Time.
- t_{SOP} = SEM Flag Update Pulse (OE or SEM).
4. REQUIREMENTS

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components’ reliability, are listed in the appendices attached to this specification.

4.2 DEVIATIONS FROM GENERIC SPECIFICATION

4.2.1 Deviations from Special In-process Controls

(a) Para. 5.2.2, Total Dose Irradiation Testing: Shall be performed during qualification and extension of qualification.

(b) Para. 5.2.2, Total Dose Irradiation Testing: Shall be performed during procurement on a lot acceptance basis at the total dose irradiation level specified in the Purchase Order.

4.2.2 Deviations from Final Production Tests (Chart II)

None.

4.2.3 Deviations from Burn-in Tests (Chart III)

(a) Para. 7.1.1(a), “High Temperature Reverse Bias” test and subsequent electrical measurements related to this test shall be omitted.

4.2.4 Deviations from Qualification Tests (Chart IV)

None.

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 Dimension Check

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 10 grammes for the flat package and 8.0 grammes for the chip carrier package.
4.4 MATERIALS AND FINISHES

The materials shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 Case

The case shall be hermetically sealed and have a ceramic body and the lids shall be welded, brazed, preform-soldered or glass-frit-sealed.

4.4.2 Lead Material and Finish

For flat packages, the material shall be Type 'G' with Type '2' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. For chip carrier packages the finish shall be Type '2' in accordance with the requirements of ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

(a) Lead Identification.
(b) The SCC Component Number.
(c) Traceability Information.

4.5.2 Lead Identification

For flat packages, an index shall be located at the top of the package in the position defined in Note 1 to Figure 2 or, alternatively, a tab may be used to identify Pin No. 1. The pin numbering must be read with the index or tab on the left-hand side. For chip carrier packages, the index shall be as defined by Figure 2(b).

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

Detail Specification Number
Type Variant (see Table 1(a))
Testing Level (B or C, as applicable)
Total Dose Irradiation Level (if applicable)

The Total Dose Irradiation Level designation shall be added for those devices for which a sample has been successfully tested to the level in question. For these devices, a code letter shall be added in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

4.5.4 Traceability Information

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.
4.6 ELECTRICAL MEASUREMENTS

4.6.1 Electrical Measurements at Room Temperature
The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at $T_{\text{amb}} = +22 \pm 3 \, ^\circ\text{C}$.

4.6.2 Electrical Measurements at High and Low Temperatures
The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{\text{amb}} = +125(\pm 0 - 5) \, ^\circ\text{C}$ and $-55(+5 - 0) \, ^\circ\text{C}$ respectively.

4.6.3 Circuits for Electrical Measurements
Circuits for use in performing electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values
The parameter drift values applicable to Power Burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at $T_{\text{amb}} = +22 \pm 3 \, ^\circ\text{C}$. The parameter drift values (Δ), applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

4.7.2 Conditions for High Temperature Reverse Bias Burn-in
Not applicable.

4.7.3 Conditions for Power Burn-in
The requirements for Power Burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for Power Burn-in shall be as specified in Table 5(b) of this specification.

4.7.4 Electrical Circuits for High Temperature Reverse Bias Burn-in
Not applicable.

4.7.5 Electrical Circuits for Power Burn-in
Circuits for use in performing the Power Burn-in tests are shown in Figure 5(b) of this specification.
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 27</td>
<td>Functional Test 1 (Nominal Inputs)</td>
<td></td>
<td>-</td>
<td>3014</td>
<td>3(b) Verify Truth Table. For Input/Output Conditions and Test Patterns, see Note 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 to 35</td>
<td>Functional Test 2 (Worst Case Inputs)</td>
<td></td>
<td>-</td>
<td>3014</td>
<td>3(b) Verify Truth Table. For Input/Output Conditions and Test Patterns, see Note 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 to 41</td>
<td>Functional Test 3 (Worst Case Outputs)</td>
<td></td>
<td>-</td>
<td>3014</td>
<td>3(b) Verify Truth Table. For Input/Output Conditions and Test Patterns, see Note 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42 to 80</td>
<td>Input Current Low Level</td>
<td>I_{IL}</td>
<td>3009</td>
<td>4(a)</td>
<td>V_{IN} (Under Test) = 0V, M/S = 0V V_{IN} (Remaining Inputs) = 5.5V $V_{DD} = 5.5V$, $V_{SS} = 0V$ (Pins 2-41-42-44-45-46-47-49-50-51-52-53-54-55-56-57-58-59-60-62-63-65-67-68-69-70-71-72-73-74-75-76-77-78-80-81-82-83-84)</td>
<td>-</td>
<td>$-1.0 \mu A$</td>
</tr>
<tr>
<td>81 to 119</td>
<td>Input Current High Level</td>
<td>I_{IH}</td>
<td>3009</td>
<td>4(b)</td>
<td>V_{IN} (Under Test) = 5.5V, M/S = 0V V_{IN} (Remaining Inputs) = 0V $V_{DD} = 5.5V$, $V_{SS} = 0V$ (Pins 2-41-42-44-45-46-47-49-50-51-52-53-54-55-56-57-58-59-60-62-63-65-67-68-69-70-71-72-73-74-75-76-77-78-80-81-82-83-84)</td>
<td>-</td>
<td>$1.0 \mu A$</td>
</tr>
<tr>
<td>120 to 155</td>
<td>Output Voltage Low Level</td>
<td>V_{OL}</td>
<td>3007</td>
<td>4(c)</td>
<td>$V_{IL} = 0.8V$, $V_{IH} = 2.2V$ $I_{OL} = 4.0mA$ $V_{DD} = 4.5V$, $V_{SS} = 0V$ Note 2 (Pins 3-4-6-7-8-9-10-11-12-13-14-15-16-17-19-20-23-24-25-27-28-29-30-31-32-33-34-35-36-37-38-40-61-62-65-66)</td>
<td>-</td>
<td>0.4 V</td>
</tr>
<tr>
<td>156 to 191</td>
<td>Output Voltage High Level</td>
<td>V_{OH}</td>
<td>3007</td>
<td>4(d)</td>
<td>$V_{IL} = 0.8V$, $V_{IH} = 2.2V$ $I_{OL} = -4.0mA$ $V_{DD} = 4.5V$, $V_{SS} = 0V$ Note 3 (Pins 3-4-6-7-8-9-10-11-12-13-14-15-16-17-19-20-23-24-25-27-28-29-30-31-32-33-34-35-36-37-38-40-61-62-65-66)</td>
<td>2.4</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTES: See Page 39.
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD MIL-STD 883</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| 192 to 228 | Input Clamp Voltage (to VSS) | V_{IC} | 3008 | 4(e) | I_N (Under Test) = -200μA
V_{IN} (Remaining Inputs) = 0V
| 229 to 260 | Output Leakage Current Third State (Low Level Applied) | I_{OZL} | 3007 | 4(f) | V_{IN} (CS_{UR}, SEM_{UR}) = 2.2V
V_{OUT} = 0V
V_{DD} = 5.5V, V_{SS} = 0V
Note 4
(Pins 3-4-6-7-8-9-10-11-12-13-14-15-16-17-19-20-23-24-25-27-28-29-30-31-32-33-34-35-36-37-38-40) | - | -1.0 μA |
| 251 to 292 | Output Leakage Current Third State (High Level Applied) | I_{OZH} | 3007 | 4(f) | V_{IN} (CS_{UR}, SEM_{UR}) = 2.2V
V_{OUT} = 5.5V
V_{DD} = 5.5V, V_{SS} = 0V
Note 4
(Pins 3-4-6-7-8-9-10-11-12-13-14-15-16-17-19-20-23-24-25-27-28-29-30-31-32-33-34-35-36-37-38-40) | - | 1.0 μA |
| 293 | Supply Current (Standby) | I_{DDSB1} | 3005 | 4(g) | V_{IN} (CS_{UR}, SEM_{UR}) = 2.2V
V_{OUT} = 5.5V
V_{DD} = 5.5V, V_{SS} = 0V
(Pins 1 + 21 + 26) | - | 10 mA |
| 294 | Supply Current (Power Down) | I_{DDSB2} | 3005 | 4(g) | V_{IN} (CS_{UR}, SEM_{UR}) = 5.3V
V_{DD} = 5.5V, V_{SS} = 0V
(Pins 1 + 21 + 26) | - | 400 μA |
| 295 | Supply Current (Both Ports Active) | I_{DDOP1} | 3005 | 4(g) | V_{IN} (OE_{UR}) = 2.2V
$V_{IL} = 0V$, $V_{IH} = 3.0V$
Outputs Open
V_{DD} = 5.5V, V_{SS} = 0V
Variants 01, 02 : f = 20MHz
Variants 03, 04 : f = 18MHz
(Pins 1 + 21 + 26) | - | 250 |
| 296 | Supply Current (Left Port Active, Right Port Standby) | I_{DDOP2L} | 3005 | 4(g) | V_{IN} (CS_{R}, SEM_{R}, OE_{RL}) = 3.0V
V_{IN} (CS_{L}) = 0V
Outputs Open
V_{DD} = 5.5V, V_{SS} = 0V
Variants 01, 02 : f = 20MHz
Variants 03, 04 : f = 18MHz
(Pins 1 + 21 + 26) | - | 160 mA |

NOTES: See Page 39.
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| 297 | Supply Current (Right Port Active, Left Port Standby) | ICCOP2R | MIL-STD 883 | 3005 | 4(g) $\begin{align*} V_{IN}(\overline{CSL}, \overline{SEM}, \overline{OE}_{RL}) &= 3.0V \\
& V_{IN}(\overline{CSR}) = 0V \\
& V_D = 5.5V, V_{SS} = 0V \\
& \text{Variants 01, 02, } f = 20\text{MHz} \\
& \text{Variants 03, 04, } f = 18\text{MHz} \\
& \text{(Pins 1 + 21 + 26)} \end{align*}$ | - | 160 | mA |
| 298 | Data Retention Current | IODDR | MIL-STD 883 | 3005 | 4(g) $\begin{align*} V_{IN}(\overline{CS}_{LR}) &= V_D \\
& V_{IN} \text{ (Remaining Inputs) } = 0V \text{ to } V_D \\
& V_D = 2.0V, V_{SS} = 0V \\
& \text{(Pins 1 + 21 + 26)} \end{align*}$ | - | 40 | µA |
| 299 | Data Retention | DR | - | - | $\begin{align*} V_{IL} &= 0V, V_{IH} = 2.0V \\
& V_{IN}(\overline{CS}_L) = V_D - 0.3V \\
& V_D = 2.0V, V_{SS} = 0V \\
& \text{Note 5} \end{align*}$ | - | - | - |

NOTES: See Page 39.
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

<table>
<thead>
<tr>
<th>No. to</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| 300 to 336 | Input Capacitance | C\textsubscript{IN} | MIL-STD 883 | 3012 | \(V_{IN} \) (Not Under Test) = 0V
\(V_{DD} = V_{SS} = 0V \)
Note 6
| 337 to 372 | Output Capacitance | C\textsubscript{OUT} | MIL-STD 883 | 3012 | \(V_{IN} \) (Not Under Test) = 0V
\(V_{DD} = V_{SS} = 0V \)
Note 6
| 373 to 384 | Functional Test 4 | | | 3014 | Verify Truth Table.
For Input and Output Conditions, see Note 7 | - | - |
| 385 to 386 | Output Low-Z Time | t\textsubscript{LZ} | MIL-STD 883 | 3004 | \(V_{DD} = 4.5V \) and 5.5V
\(V_{SS} = 0V \)
Note 6 | 5.0 | ns |
| 387 to 388 | Output High-Z Time | t\textsubscript{HZ} | MIL-STD 883 | 3004 | \(V_{DD} = 4.5V \) and 5.5V
\(V_{SS} = 0V \)
Note 6
Variants 01, 02
Variants 03, 04 | - | ns |
| 389 to 390 | Chip Select to Power Up Time | t\textsubscript{PU} | MIL-STD 883 | 3004 | \(V_{DD} = 4.5V \) and 5.5V
\(V_{SS} = 0V \)
Note 6 | - | ns |
| 391 to 392 | Chip Disable to Power Down Time | t\textsubscript{PD} | MIL-STD 883 | 3004 | \(V_{DD} = 4.5V \) and 5.5V
\(V_{SS} = 0V \)
Note 6 | - | ns |
| 393 to 394 | Output High-Z Time (OE to Output) | t\textsubscript{HZ} | MIL-STD 883 | 3004 | \(V_{DD} = 4.5V \) and 5.5V
\(V_{SS} = 0V \)
Note 6
Variants 01, 02
Variants 03, 04 | - | ns |
| 395 to 396 | Write Enable to Output in High-Z | t\textsubscript{WZ} | MIL-STD 883 | 3004 | \(V_{DD} = 4.5V \) and 5.5V
\(V_{SS} = 0V \)
Note 6
Variants 01, 02
Variants 03, 04 | - | ns |

NOTES: See Page 39.
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD MIL-STD 883</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| 397 to 398 | Output Active to End of Write | t_{OW} | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Note 6 | 0 | ns |
| 399 to 400 | Address Access Time | t_{AA} | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | - 55 | ns |
| 401 to 402 | Chip Select Access Time | t_{ACS} | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | - 45 | ns |
| 403 to 404 | Byte Enable Access Time | t_{ABE} | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | - 45 | ns |
| 405 to 406 | Output Enable Access Time | t_{AOE} | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | - 30 | ns |
| 407 to 408 | Address Setup Time | t_{AS} | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 8 | 0 | ns |
| 409 to 410 | Data Hold Time | t_{DH} | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 8 | 0 | ns |
| 411 to 412 | Write Pulse Width | t_{WP} | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | 40 - 35 | ns |
| 413 to 414 | BUSY Access Time to Address | t_{BAA} | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | 40 - 35 | ns |

NOTES: See Page 39.
<table>
<thead>
<tr>
<th>No. to</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD MIL-STD 883</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS MIN</th>
<th>LIMITS MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>415 to 416</td>
<td>BUSY Disable Time to Address</td>
<td>t_BDA</td>
<td>3004</td>
<td>4(j)</td>
<td>V_DD = 4.5V and 5.5V</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_SS = 0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417 to 418</td>
<td>BUSY Access Time to Chip Select</td>
<td>t_BAC</td>
<td>3004</td>
<td>4(j)</td>
<td>V_DD = 4.5V and 5.5V</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_SS = 0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>419 to 420</td>
<td>BUSY Disable Time to Chip Select</td>
<td>t_BDC</td>
<td>3004</td>
<td>4(j)</td>
<td>V_DD = 4.5V and 5.5V</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_SS = 0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>421 to 422</td>
<td>Write to BUSY Input</td>
<td>t_WB</td>
<td>3004</td>
<td>4(j)</td>
<td>V_DD = 4.5V and 5.5V</td>
<td>0</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_SS = 0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>423 to 424</td>
<td>Write Hold after BUSY</td>
<td>t_WH</td>
<td>3004</td>
<td>4(j)</td>
<td>V_DD = 4.5V and 5.5V</td>
<td>30</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_SS = 0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>425 to 426</td>
<td>Interrupt Set Time</td>
<td>t_INS</td>
<td>3004</td>
<td>4(j)</td>
<td>V_DD = 4.5V and 5.5V</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_SS = 0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427 to 428</td>
<td>Interrupt Reset Time</td>
<td>t_INR</td>
<td>3004</td>
<td>4(j)</td>
<td>V_DD = 4.5V and 5.5V</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_SS = 0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>429 to 430</td>
<td>Read Cycle Time</td>
<td>t_RC</td>
<td>3004</td>
<td>4(j)</td>
<td>V_DD = 4.5V and 5.5V</td>
<td>55</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_SS = 0V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: See Page 39.
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD MIL-STD 883</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
</tbody>
</table>
| 431 to 432 | Write Cycle Time | t\(_{WC}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9
Variants 01, 02
Variants 03, 04 | 55 | - | ns |
| 433 to 434 | Output Hold from Address Change | t\(_{OH}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9 | 3.0 | - | ns |
| 435 to 436 | SEM Flag Update Pulse (OE or SEM) | t\(_{SOP}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9 | 15 | - | ns |
| 437 to 438 | Chip Select to End of Write | t\(_{SW}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9
Variants 01, 02
Variants 03, 04 | 45 | - | ns |
| 439 to 440 | Address Valid to End of Write | t\(_{AW}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9
Variants 01, 02
Variants 03, 04 | 45 | - | ns |
| 441 to 442 | Write Recovery Time | t\(_{WR}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9 | 0 | - | ns |
| 443 to 444 | Data Valid to End of Write | t\(_{DW}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9
Variants 01, 02
Variants 03, 04 | 30 | - | ns |
| 445 to 446 | SEM Flag Write to Read Time | t\(_{SWRD}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9 | 10 | - | ns |
| 447 to 448 | SEM Flag Contention Window | t\(_{SPS}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9 | 10 | - | ns |
| 449 to 450 | Write Pulse to Data Delay | t\(_{WDDS}\) | 3004 | 4(j) | V\(_{DD}\) = 4.5V and 5.5V
V\(_{SS}\) = 0V
Notes 7 and 9
Variants 01, 02
Variants 03, 04 | 80 | - | ns |

NOTES: See Page 39.
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>451</td>
<td>Write Data Valid to Read Data Delay</td>
<td>tDDLDM</td>
<td>3004</td>
<td>4(j)</td>
<td>$V_{DD} = 4.5V$ and $5.5V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Master Only)</td>
<td></td>
<td></td>
<td></td>
<td>$V_{SS} = 0V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>453</td>
<td>Arbitration Priority Setup Time</td>
<td>tAPS</td>
<td>3004</td>
<td>4(j)</td>
<td>$V_{DD} = 4.5V$ and $5.5V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{SS} = 0V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 9</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>455</td>
<td>BUSY Disable to Valid Data</td>
<td>tBDD</td>
<td>3004</td>
<td>4(j)</td>
<td>$V_{DD} = 4.5V$ and $5.5V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{SS} = 0V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7, 9 and 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>457</td>
<td>Write Pulse to Data Delay</td>
<td>tWDDM</td>
<td>3004</td>
<td>4(j)</td>
<td>$V_{DD} = 4.5V$ and $5.5V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{SS} = 0V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>459</td>
<td>Write Data Valid to Read Data Delay</td>
<td>tDDOS</td>
<td>3004</td>
<td>4(j)</td>
<td>$V_{DD} = 4.5V$ and $5.5V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Slave Only)</td>
<td></td>
<td></td>
<td></td>
<td>$V_{SS} = 0V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>461</td>
<td>Address Setup Time (Interrupt)</td>
<td>TAS</td>
<td>3004</td>
<td>4(j)</td>
<td>$V_{DD} = 4.5V$ and $5.5V$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{SS} = 0V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>463</td>
<td>Write Recovery Time (Interrupt)</td>
<td>TWR</td>
<td>3004</td>
<td>4(j)</td>
<td>$V_{DD} = 4.5V$ and $5.5V$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{SS} = 0V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: See Page 39.
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE (CONT'D)

NOTES
1. Functional test go-no-go with the following test sequences:

FUNCTIONAL TEST 1

<table>
<thead>
<tr>
<th>Pattern</th>
<th>RATE (ns)</th>
<th>V_{DD} (V)</th>
<th>V_{SS} (V)</th>
<th>V_{IL} (V)</th>
<th>V_{IH} (V)</th>
<th>I_{OL} (mA)</th>
<th>I_{OH} (mA)</th>
<th>V_{OUT} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECKERBOARD</td>
<td>110</td>
<td>4.5 / 5.0 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>MARCH</td>
<td>110</td>
<td>4.5 / 5.0 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>CEDES</td>
<td>110</td>
<td>5.0</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>PATTERN</td>
<td>110</td>
<td>4.5 / 5.0 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>DUAL-PORT</td>
<td>110</td>
<td>4.5 / 5.0 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>STRESS</td>
<td>110</td>
<td>4.0 / 6.0</td>
<td>-0.5</td>
<td>4.5 / 6.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>GRAY-CODE</td>
<td>110</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>BUSY</td>
<td>110</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>ARB-SLAVE</td>
<td>110</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>ARB-MASTER</td>
<td>110</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>INT</td>
<td>110</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>SEM</td>
<td>110</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

FUNCTIONAL TEST 2

<table>
<thead>
<tr>
<th>Pattern</th>
<th>RATE (ns)</th>
<th>V_{DD} (V)</th>
<th>V_{SS} (V)</th>
<th>V_{IL} (V)</th>
<th>V_{IH} (V)</th>
<th>I_{OL} (mA)</th>
<th>I_{OH} (mA)</th>
<th>V_{OUT} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IL}-ADD L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0.8</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IL}-CLK L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0.8</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IL}-DATA L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0.8</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IL}-BUSY L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0.8</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IH}-ADD L/R</td>
<td>110</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IH}-CLK L/R</td>
<td>110</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IH}-DATA L/R</td>
<td>110</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>V_{IH}-BUSY L/R</td>
<td>110</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
<td>2.2</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

FUNCTIONAL TEST 3

<table>
<thead>
<tr>
<th>Pattern</th>
<th>RATE (ns)</th>
<th>V_{DD} (V)</th>
<th>V_{SS} (V)</th>
<th>V_{IL} (V)</th>
<th>V_{IH} (V)</th>
<th>I_{OL} (mA)</th>
<th>I_{OH} (mA)</th>
<th>V_{OUT} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OL}-DATA L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>V_{OL}-BUSY L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>V_{OL}-INT L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>V_{OH}-DATA L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>2.4</td>
</tr>
<tr>
<td>V_{OH}-BUSY L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>2.4</td>
</tr>
<tr>
<td>V_{OH}-INT L/R</td>
<td>110</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>2.4</td>
</tr>
</tbody>
</table>
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE (CONT'D)

2. Select Address inputs to produce low level output at the pin under test in accordance with Figure 3(b).

3. Select Address inputs to produce high level output at the pin under test in accordance with Figure 3(b).

4. For I/Os, the measurement includes the Input Currents \(I_{IL} \) and \(I_{IH} \).

5. Data Retention Procedure:
 (a) Write Memory (one port) with Checkerboard pattern with timing = 110ns at the conditions given.
 (b) Power Down to \(V_{DD} = 2.0V \) for 250ms.
 (c) Restore to original conditions given, read Memory and compare with original pattern.
 (d) Repeat the procedure with Checkerboard pattern with timing = 110ns at the conditions given.
 (e) For Variants 01 and 02, \(t_r = 45ns \).
 For Variants 03 and 04, \(t_r = 55ns \).

6. Guaranteed but not tested. Characterised at initial design and after major process change.

7. FUNCTIONAL TEST 4

<table>
<thead>
<tr>
<th>Pattern</th>
<th>RATE (ns) Variants 01, 02</th>
<th>RATE (ns) Variants 03, 04</th>
<th>V_{DD} (V)</th>
<th>V_{SS} (V)</th>
<th>V_{IL} (V)</th>
<th>V_{IH} (V)</th>
<th>I_{OL} (mA)</th>
<th>I_{OH} (mA)</th>
<th>V_{OUT} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDYN1</td>
<td>55</td>
<td>45</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>TDYN2</td>
<td>55</td>
<td>45</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>DUAL-PORT-TEST</td>
<td>55</td>
<td>45</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>BUSY-R-L</td>
<td>55</td>
<td>45</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>ARB-MASTER</td>
<td>55</td>
<td>45</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>ARB-SLAVE</td>
<td>55</td>
<td>45</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
<tr>
<td>INT-DYN</td>
<td>45</td>
<td>45</td>
<td>4.5 / 5.5</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>4.0</td>
<td>-4.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Output load = 1 TTL gate equivalent + \(C_L \leq 100 \mu F \).
\(t_r = t_f = 5.0 \text{ns maximum} \).

10. \(t_{BDD} \) is a calculated parameter and is the greater of \(t_{WDD} - t_{WP} \) (actual) or \(t_{DD} - t_{DW} \) (actual).
<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 27</td>
<td>Functional Test 1 (Nominal Inputs)</td>
<td>-</td>
<td>3014</td>
<td>3(b)</td>
<td>Verify Truth Table. For Input/Output Conditions and Test Patterns, see Note 1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28 to 35</td>
<td>Functional Test 2 (Worst Case Inputs)</td>
<td>-</td>
<td>3014</td>
<td>3(b)</td>
<td>Verify Truth Table. For Input/Output Conditions and Test Patterns, see Note 1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36 to 41</td>
<td>Functional Test 3 (Worst Case Outputs)</td>
<td>-</td>
<td>3014</td>
<td>3(b)</td>
<td>Verify Truth Table. For Input/Output Conditions and Test Patterns, see Note 1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>42 to 80</td>
<td>Input Current Low Level</td>
<td>I_{IL}</td>
<td>3009</td>
<td>4(a)</td>
<td>V_{IN} (Under Test) = 0V, $M/\bar{S} = 0V$ V_{IN} (Remaining Inputs) = 5.5V $V_{DD} = 5.5V$, $V_{SS} = 0V$ (Pins 2-41-42-44-45-46-47-49-50-51-52-53-54-55-56-57-58-59-60-62-63-65-67-68-69-70-71-72-73-74-75-76-77-78-80-81-82-83-84)</td>
<td>-</td>
<td>- 1.0 μA</td>
</tr>
<tr>
<td>81 to 119</td>
<td>Input Current High Level</td>
<td>I_{IH}</td>
<td>3009</td>
<td>4(b)</td>
<td>V_{IN} (Under Test) = 5.5V, $M/\bar{S} = 0V$ V_{IN} (Remaining Inputs) = 0V $V_{DD} = 5.5V$, $V_{SS} = 0V$ (Pins 2-41-42-44-45-46-47-49-50-51-52-53-54-55-56-57-58-59-60-62-63-65-67-68-69-70-71-72-73-74-75-76-77-78-80-81-82-83-84)</td>
<td>-</td>
<td>1.0 μA</td>
</tr>
<tr>
<td>120 to 155</td>
<td>Output Voltage Low Level</td>
<td>V_{OL}</td>
<td>3007</td>
<td>4(c)</td>
<td>$V_{IL} = 0.8V$, $V_{IH} = 2.2V$ $I_{OL} = 4.0mA$ $V_{DD} = 4.5V$, $V_{SS} = 0V$ Note 2 (Pins 3-4-6-7-8-9-10-11-12-13-14-15-16-17-19-20-23-24-25-27-28-29-30-31-32-33-34-35-36-37-38-40-61-62-65-66)</td>
<td>-</td>
<td>0.4 V</td>
</tr>
<tr>
<td>156 to 191</td>
<td>Output Voltage High Level</td>
<td>V_{OH}</td>
<td>3007</td>
<td>4(d)</td>
<td>$V_{IL} = 0.8V$, $V_{IH} = 2.2V$ $I_{OL} = -4.0mA$ $V_{DD} = 4.5V$, $V_{SS} = 0V$ Note 3 (Pins 3-4-6-7-8-9-10-11-12-13-14-15-16-17-19-20-23-24-25-27-28-29-30-31-32-33-34-35-36-37-38-40-61-62-65-66)</td>
<td>2.4</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTES: See Page 39.
TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES
- d.c. PARAMETERS (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| 192 to 228 | Input Clamp Voltage (to VSS) | VIC | MIL-STD 883 | 3008 | 4(e) | I_N (Under Test) = $-200\mu A$
V_{IN} (Remaining Inputs) = 0V
| 229 to 260 | Output Leakage Current Third State (Low Level Applied) | IOZL | MIL-STD 883 | 3007 | 4(f) | V_{IN} (CS_{LR}, SEM_{LR}) = 2.2V
$V_{OUT} = 0V$
$V_{DD} = 5.5V$, $V_{SS} = 0V$
Note 4
(Pins 3-4-6-7-8-9-10-11-12-13-14-15-16-17-19-20-23-24-25-27-28-29-30-31-32-33-34-35-36-37-38-40) | - | - 1.0 | μA |
| 261 to 292 | Output Leakage Current Third State (High Level Applied) | IOZH | MIL-STD 883 | 3007 | 4(f) | V_{IN} (CS_{LR}, SEM_{LR}) = 2.2V
$V_{OUT} = 5.5V$
$V_{DD} = 5.5V$, $V_{SS} = 0V$
Note 4
(Pins 3-4-6-7-8-9-10-11-12-13-14-15-16-17-19-20-23-24-25-27-28-29-30-31-32-33-34-35-36-37-38-40) | - | 1.0 | μA |
| 293 | Supply Current (Standby) | IDDSB1 | MIL-STD 883 | 3005 | 4(g) | V_{IN} (CS_{LR}, SEM_{LR}) = 2.2V
$V_{OUT} = 5.5V$
$V_{DD} = 5.5V$, $V_{SS} = 0V$
(Pins 1 + 21 + 26) | - | 10 | mA |
| 294 | Supply Current (Power Down) | IDDSB2 | MIL-STD 883 | 3005 | 4(g) | V_{IN} (CS_{LR}, SEM_{LR}) = 5.3V
$V_{DD} = 5.5V$, $V_{SS} = 0V$
(Pins 1 + 21 + 26) | - | 400 | μA |
| 295 | Supply Current (Both Ports Active) | IDDOP1 | MIL-STD 883 | 3005 | 4(g) | V_{IN} (OE_{LR}) = 2.2V
$V_{IL} = 0V$, $V_{IH} = 3.0V$
Outputs Open
$V_{DD} = 5.5V$, $V_{SS} = 0V$
Variants 01, 02 : $f = 20MHz$
Variants 03, 04 : $f = 18MHz$
(Pins 1 + 21 + 26) | - | 250 | mA |
| 296 | Supply Current (Left Port Active, Right Port Standby) | IDDOP2L | MIL-STD 883 | 3005 | 4(g) | V_{IN} (CS_{R}, SEM_{R}, OE_{RL}) = 3.0V
V_{IN} (CS_{L}) = 0V
Outputs Open
$V_{DD} = 5.5V$, $V_{SS} = 0V$
Variants 01, 02 : $f = 20MHz$
Variants 03, 04 : $f = 18MHz$
(Pins 1 + 21 + 26) | - | 160 | mA |

NOTES: See Page 39.
TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES - d.c. PARAMETERS (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD MIL-STD 883</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>297</td>
<td>Supply Current (Right Port Active, Left Port Standby)</td>
<td>(I_{CCOP2R})</td>
<td>3005</td>
<td>4(g)</td>
<td>(V_{IN} (C_{SL}, ; \overline{SEML}, ; \overline{OE_{R}}) = 3.0V) (V_{IN} (C_{SR}) = 0V) Outputs Open (V_{DD} = 5.5V, ; V_{SS} = 0V) Variants 01, 02 : (f = 20MHz) Variants 03, 04 : (f = 18MHz) (Pins 1 + 21 + 26)</td>
<td>- 160</td>
<td>mA</td>
</tr>
<tr>
<td>298</td>
<td>Data Retention Current</td>
<td>(I_{DDDR})</td>
<td>3005</td>
<td>4(g)</td>
<td>(V_{IN} (C_{SLR}) = V_{DD}) (V_{IN}) (Remaining Inputs = 0V to (V_{DD}) (V_{DD} = 2.0V, ; V_{SS} = 0V) (Pins 1 + 21 + 26)</td>
<td>- 40</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>299</td>
<td>Data Retention</td>
<td>DR</td>
<td>-</td>
<td>-</td>
<td>(V_{IL} = 0V, ; V_{IH} = 2.0V) (V_{IN} (C_{SL}) = V_{DD} - 0.3V) (V_{DD} = 2.0V, ; V_{SS} = 0V) Note 5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTES: See Page 39.
TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES
- a.c. PARAMETERS

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD MIL-STD 883</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| 300 to 336 | Input Capacitance | C_{IN} | 3012 | 4(h) | \(V_{IN} \) (Not Under Test) = 0V
\(V_{DD} = V_{SS} = 0V\)
Note 6
| 337 to 372 | Output Capacitance | C_{OUT} | 3012 | 4(i) | \(V_{IN} \) (Not Under Test) = 0V
\(V_{DD} = V_{SS} = 0V\)
Note 6
| 373 to 384 | Functional Test 4 (Nominal Inputs) | - | 3014 | 3(b) | Verify Truth Table.
For Input and Output Conditions, see Note 7 | - | - | - |
| 385 to 386 | Output Low-Z Time (CS to Output) | t_{LZ} | 3004 | 4(j) | \(V_{DD} = 4.5V\) and 5.5V
\(V_{SS} = 0V\)
Note 6 | 5.0 | ns | |
| 387 to 388 | Output High-Z Time (CS to Output) | t_{HZ} | 3004 | 4(j) | \(V_{DD} = 4.5V\) and 5.5V
\(V_{SS} = 0V\)
Note 6
Variants 01, 02
Variants 03, 04 | ns | - | 20 |
| 389 to 390 | Chip Select to Power Up Time | t_{PU} | 3004 | 4(j) | \(V_{DD} = 4.5V\) and 5.5V
\(V_{SS} = 0V\)
Note 6 | 0 | ns | |
| 391 to 392 | Chip Disable to Power Down Time | t_{PD} | 3004 | 4(j) | \(V_{DD} = 4.5V\) and 5.5V
\(V_{SS} = 0V\)
Note 6 | - | 50 | ns |
| 393 to 394 | Output High-Z Time (OE to Output) | t_{HZ} | 3004 | 4(j) | \(V_{DD} = 4.5V\) and 5.5V
\(V_{SS} = 0V\)
Note 6
Variants 01, 02
Variants 03, 04 | ns | - | 25 |
| 395 to 396 | Write Enable to Output in High-Z | t_{WZ} | 3004 | 4(j) | \(V_{DD} = 4.5V\) and 5.5V
\(V_{SS} = 0V\)
Note 6
Variants 01, 02
Variants 03, 04 | ns | - | 20 |

NOTES: See Page 39.
TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

- **a.c. PARAMETERS (CONT'D)**

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIL-STD 883</td>
<td>3004</td>
<td>4(j)</td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>397 to 398</td>
<td>Output Active to End of Write</td>
<td>t\textsubscript{LOW}</td>
<td></td>
<td></td>
<td>(V_{DD} = 4.5V) and 5.5V</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{SS} = 0V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>399 to 400</td>
<td>Address Access Time</td>
<td>t\textsubscript{AA}</td>
<td></td>
<td></td>
<td>(V_{DD} = 4.5V) and 5.5V</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{SS} = 0V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>401 to 402</td>
<td>Chip Select Access Time</td>
<td>t\textsubscript{ACS}</td>
<td></td>
<td></td>
<td>(V_{DD} = 4.5V) and 5.5V</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{SS} = 0V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>403 to 404</td>
<td>Byte Enable Access Time</td>
<td>t\textsubscript{ABE}</td>
<td></td>
<td></td>
<td>(V_{DD} = 4.5V) and 5.5V</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{SS} = 0V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>45</td>
</tr>
<tr>
<td>405 to 406</td>
<td>Output Enable Access Time</td>
<td>t\textsubscript{AOE}</td>
<td></td>
<td></td>
<td>(V_{DD} = 4.5V) and 5.5V</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{SS} = 0V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>407 to 408</td>
<td>Address Setup Time</td>
<td>t\textsubscript{AS}</td>
<td></td>
<td></td>
<td>(V_{DD} = 4.5V) and 5.5V</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{SS} = 0V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>409 to 410</td>
<td>Data Hold Time</td>
<td>t\textsubscript{DH}</td>
<td></td>
<td></td>
<td>(V_{DD} = 4.5V) and 5.5V</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{SS} = 0V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>411 to 412</td>
<td>Write Pulse Width</td>
<td>t\textsubscript{WP}</td>
<td></td>
<td></td>
<td>(V_{DD} = 4.5V) and 5.5V</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{SS} = 0V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>413 to 414</td>
<td>BUSY Access Time to Address</td>
<td>t\textsubscript{BA}</td>
<td></td>
<td></td>
<td>(V_{DD} = 4.5V) and 5.5V</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(V_{SS} = 0V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Notes 7 and 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: See Page 39.
<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| 415 to 416 | BUSY Disable Time to Address | tBDA | 3004 | 4(j) | V_{DD} = 4.5V and 5.5V
V_{SS} = 0V
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | 40 | - | ns |
| 417 to 418 | BUSY Access Time to Chip Select | tBAC | 3004 | 4(j) | V_{DD} = 4.5V and 5.5V
V_{SS} = 0V
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | 40 | - | ns |
| 419 to 420 | BUSY Disable Time to Chip Select | tBDC | 3004 | 4(j) | V_{DD} = 4.5V and 5.5V
V_{SS} = 0V
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | 35 | - | ns |
| 421 to 422 | Write to BUSY Input | tWB | 3004 | 4(j) | V_{DD} = 4.5V and 5.5V
V_{SS} = 0V
Notes 7 and 8 | 0 | - | ns |
| 423 to 424 | Write Hold after BUSY | tWH | 3004 | 4(j) | V_{DD} = 4.5V and 5.5V
V_{SS} = 0V
Notes 7 and 8 | 30 | - | ns |
| 425 to 426 | Interrupt Set Time | tINS | 3004 | 4(j) | V_{DD} = 4.5V and 5.5V
V_{SS} = 0V
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | 40 | - | ns |
| 427 to 428 | Interrupt Reset Time | tINR | 3004 | 4(j) | V_{DD} = 4.5V and 5.5V
V_{SS} = 0V
Notes 7 and 8
Variants 01, 02
Variants 03, 04 | 40 | - | ns |
| 429 to 430 | Read Cycle Time | tRC | 3004 | 4(j) | V_{DD} = 4.5V and 5.5V
V_{SS} = 0V
Notes 7 and 9
Variants 01, 02
Variants 03, 04 | 55 | - | ns |

NOTES: See Page 39.
TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES
- a.c. PARAMETERS (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIL-STD 883</td>
<td></td>
<td>MIN</td>
</tr>
</tbody>
</table>
| 431 to 432 | Write Cycle Time | tWC | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 55 | - | ns |
| | | | | Variants 01, 02 | 45 | - | ns |
| | | | | Variants 03, 04 | | | |
| 433 to 434 | Output Hold from Address Change | tOH | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 3.0 | - | ns |
| 435 to 436 | SEM Flag Update Pulse (OE or SEM) | tSOP | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 15 | - | ns |
| 437 to 438 | Chip Select to End of Write | tSW | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 45 | - | ns |
| | | | | Variants 01, 02 | 40 | - | ns |
| | | | | Variants 03, 04 | | | |
| 439 to 440 | Address Valid to End of Write | tAW | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 45 | - | ns |
| | | | | Variants 01, 02 | 40 | - | ns |
| | | | | Variants 03, 04 | | | |
| 441 to 442 | Write Recovery Time | tWR | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 0 | - | ns |
| 443 to 444 | Data Valid to End of Write | tDW | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 30 | - | ns |
| | | | | Variants 01, 02 | 25 | - | ns |
| | | | | Variants 03, 04 | | | |
| 445 to 446 | SEM Flag Write to Read Time | tSWRD | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 10 | - | ns |
| 447 to 448 | SEM Flag Contention Window | tSPS | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 10 | - | ns |
| 449 to 450 | Write Pulse to Data Delay | tWDDS | 3004 | V_{DD} = 4.5V and 5.5V
| | | | | V_{SS} = 0V | | | |
| | | | | Notes 7 and 9 | 80 | - | ns |
| | | | | Variants 01, 02 | 70 | - | ns |
| | | | | Variants 03, 04 | | | |

NOTES: See Page 39.
TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT’D)

<table>
<thead>
<tr>
<th>No. to</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>TEST METHOD</th>
<th>TEST FIG.</th>
<th>TEST CONDITIONS</th>
<th>LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
</table>
| 451 to | Write Data Valid to Read Data Delay | tDDDM | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 9
Variants 01, 02
Variants 03, 04 | 65 | ns |
| 452 | (Master Only) | | | | | | |
| 453 to | Arbitration Priority Setup Time | tAPS | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 9 | 5.0 | ns |
| 454 | | | | | | | |
| 455 to | BUSY Disable to Valid Data | tBDD | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7, 9 and 10 | - | ns |
| 456 | | | | | | | |
| 457 to | Write Pulse to Data Delay | tWDDM | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 9
Variants 01, 02
Variants 03, 04 | 80 | ns |
| 458 | | | | | | | |
| 459 to | Write Data Valid to Read Data Delay | tDDDS | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 9
Variants 01, 02
Variants 03, 04 | 65 | ns |
| 460 | (Slave Only) | | | | | | |
| 461 to | Address Setup Time (Interrupt) | TAS | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 9 | 0 | ns |
| 462 | | | | | | | |
| 463 to | Write Recovery Time (Interrupt) | TWR | 3004 | 4(j) | $V_{DD} = 4.5V$ and $5.5V$
$V_{SS} = 0V$
Notes 7 and 9 | 0 | ns |
| 464 | | | | | | | |

NOTES: See Page 39.
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - INPUT CURRENT LOW LEVEL

![Input Current Low Level Circuit](image1)

NOTES
1. Each input to be tested separately.

FIGURE 4(b) - INPUT CURRENT HIGH LEVEL

![Input Current High Level Circuit](image2)

NOTES
1. Each input to be tested separately.

FIGURE 4(c) - OUTPUT VOLTAGE LOW LEVEL

![Output Voltage Low Level Circuit](image3)

NOTES
1. See Note 2 to Table 2.
2. Each output to be tested separately.

FIGURE 4(d) - OUTPUT VOLTAGE HIGH LEVEL

![Output Voltage High Level Circuit](image4)

NOTES
1. See Note 3 to Table 2.
2. Each output to be tested separately.
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(e) - INPUT CLAMP VOLTAGE

FIGURE 4(f) - OUTPUT LEAKAGE CURRENT
THIRD STATE

NOTES
1. Each input to be tested separately.

NOTES
1. Each output to be tested separately.

FIGURE 4(g) - SUPPLY CURRENT

INPUT CONDITIONS
(SEE NOTE 1)

NOTES
1. As per Table 2 or 3.
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(h) - INPUT CAPACITANCE

NOTES
1. Each input to be tested separately.
2. f = 100kHz to 1MHz.

FIGURE 4(i) - OUTPUT CAPACITANCE

NOTES
1. Each output to be tested separately.
2. f = 100kHz to 1MHz.
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(i) - PROPAGATION DELAY

INPUT CONDITIONS (SEE FIGURE 3(b))

OUTPUT LOAD
BUSY, INT, DATA_{OUT}

167Ω 1.73V
30pF

OUTPUT LOAD
^tHZ, ^tLZ, ^tWZ, ^tDW

5.0V
1250Ω
775Ω
5.0pF

NOTES
1. Voltage Waveforms as per Figure 3(b).
TABLE 4 - PARAMETER DRIFT VALUES

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>SPEC. AND/OR TEST METHOD</th>
<th>TEST CONDITIONS</th>
<th>CHANGE LIMITS (Δ)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Input Current Low Level</td>
<td>I_{IL}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>μA</td>
</tr>
<tr>
<td>81</td>
<td>Input Current High Level</td>
<td>I_{IH}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>μA</td>
</tr>
<tr>
<td>120</td>
<td>Output Voltage Low Level</td>
<td>V_{OL}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>V</td>
</tr>
<tr>
<td>156</td>
<td>Output Voltage High Level</td>
<td>V_{OH}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>V</td>
</tr>
<tr>
<td>229</td>
<td>Output Leakage Current Third State (Low Level Applied)</td>
<td>I_{OZL}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>μA</td>
</tr>
<tr>
<td>261</td>
<td>Output Leakage Current Third State (High Level Applied)</td>
<td>I_{OZH}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>μA</td>
</tr>
<tr>
<td>293</td>
<td>Supply Current (Standby)</td>
<td>I_{OSSB1}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 1.0</td>
<td>mA</td>
</tr>
<tr>
<td>294</td>
<td>Supply Current (Power Down)</td>
<td>I_{OSSB2}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 40</td>
<td>μA</td>
</tr>
<tr>
<td>298</td>
<td>Data Retention Current</td>
<td>I_{DDDR}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 5.0</td>
<td>μA</td>
</tr>
</tbody>
</table>
TABLE 5(a) - CONDITIONS FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

TABLE 5(b) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TESTS

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>CONDITION</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ambient Temperature</td>
<td>T_{amb}</td>
<td>+125(+0 -5)</td>
<td>°C</td>
</tr>
<tr>
<td>2</td>
<td>Outputs - (Pins 61-62-65-66)</td>
<td>V_{OUT}</td>
<td>$V_{DD}/2$</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>Inputs - (Pins 44-63-83)</td>
<td>V_{IN}</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>Inputs - (Pins 3-6-8-10-12-14-16-19-23-25-28-30-32-34-36-38)</td>
<td>V_{IN}</td>
<td>S19</td>
<td>Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 1)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inputs - (Pins 4-7-9-11-13-15-17-20-24-27-29-31-33-35-37-40)</td>
<td>V_{IN}</td>
<td>S20</td>
<td>Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 1)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Inputs - (Pins 48-49-50-51-52-53-54-55-56-57-58-59-60-67-68-69-70-71-72-73-74-75-76-77-78-79)</td>
<td>V_{IN}</td>
<td>S6 to S18 as per Figure 5(b) (Note 1)</td>
<td>Vac</td>
</tr>
<tr>
<td>7</td>
<td>Input - (Pin 84)</td>
<td>V_{IN}</td>
<td>S1</td>
<td>Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 2)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Input - (Pin 42)</td>
<td>V_{IN}</td>
<td>S2</td>
<td>Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 2)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Inputs - (Pins 2-41)</td>
<td>V_{IN}</td>
<td>S3</td>
<td>Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 2)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Inputs - (Pins 45-46-47)</td>
<td>V_{IN}</td>
<td>S4</td>
<td>Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 2)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Inputs - (Pins 80-81-82)</td>
<td>V_{IN}</td>
<td>S5</td>
<td>Vac</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Note 2)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Pulse Voltage</td>
<td>V_{GEN}</td>
<td>0V to V_{DD}</td>
<td>Vac</td>
</tr>
<tr>
<td>13</td>
<td>Pulse Frequency Square Wave</td>
<td>f0</td>
<td>360</td>
<td>kHz</td>
</tr>
<tr>
<td>14</td>
<td>Positive Supply Voltage (Pins 1-21-26)</td>
<td>V_{DD}</td>
<td>5.0(+0.5-0)</td>
<td>V</td>
</tr>
<tr>
<td>15</td>
<td>Negative Supply Voltage (Pins 5-18-22-39-43-64)</td>
<td>V_{SS}</td>
<td>0</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTES
1. Input Protection Resistor = Output Load Resistor = 1.0kΩ.
2. Input Timings:

![Input Timings Diagram](image-url)
FIGURE 5(a) - ELECTRICAL CIRCUIT FOR HIGH TEMPERATURE REVERSE BIAS BURN-IN

Not applicable.

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TESTS

NOTES
1. \(R = 1.0\, \text{k}\Omega \).
4.8 ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION No. 9000)

4.8.1 Electrical Measurements on Completion of Environmental Tests

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{\text{amb}} = +22 \pm 3 ^\circ\text{C}$.

4.8.2 Electrical Measurements at Intermediate Points during Endurance Tests

The parameters to be measured at intermediate points during endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{\text{amb}} = +22 \pm 3 ^\circ\text{C}$.

4.8.3 Electrical Measurements on Completion of Endurance Tests

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{\text{amb}} = +22 \pm 3 ^\circ\text{C}$.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5(b) of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5(b) of this specification.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

4.9 TOTAL DOSE IRRADIATION TESTING

4.9.1 Application

If specified in Para. 4.2.1 of this specification, total dose irradiation testing shall be performed in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

4.9.2 Bias Conditions

Continuous bias shall be applied during irradiation testing as shown in Figure 6 of this specification.

4.9.3 Electrical Measurements

The parameters to be measured prior to irradiation exposure are scheduled in Table 2 of this specification. Only devices which meet the requirements of Table 2 shall be included in the test sample.

The parameters to be measured during and on completion of irradiation testing are scheduled in Table 7 of this specification.
TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>SPEC. AND/OR TEST METHOD</th>
<th>TEST CONDITIONS</th>
<th>CHANGE LIMITS (Δ)</th>
<th>ABSOLUTE LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Functional Test 1 (Nominal Inputs)</td>
<td>-</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 to 27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Functional Test 2 (Worst Case Inputs)</td>
<td>-</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28 to 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Functional Test 3 (Worst Case Outputs)</td>
<td>-</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36 to 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Input Current Low Level</td>
<td>I_{IL}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>-</td>
<td>1.0 μA</td>
</tr>
<tr>
<td>42 to 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Input Current High Level</td>
<td>I_{IH}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>-</td>
<td>1.0 μA</td>
</tr>
<tr>
<td>81 to 119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Output Voltage Low Level</td>
<td>V_{OL}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>120 to 155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Output Voltage High Level</td>
<td>V_{OH}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>156 to 191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>Output Leakage Current Third State (Low Level Applied)</td>
<td>I_{OZL}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>-</td>
<td>1.0 μA</td>
</tr>
<tr>
<td>229 to 260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>Output Leakage Current Third State (High Level Applied)</td>
<td>I_{OZH}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>261 to 292</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>Supply Current (Standby)</td>
<td>I_{OODSB1}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>293 to 294</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>294</td>
<td>Supply Current (Power Down)</td>
<td>I_{OODSB2}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>400</td>
<td>μA</td>
</tr>
<tr>
<td>294 to 295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>Supply Current (Both Ports Active)</td>
<td>I_{OODOP1}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>250</td>
<td>mA</td>
</tr>
<tr>
<td>295 to 296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>296</td>
<td>Supply Current (Left Port Active, Right Port Standby)</td>
<td>I_{OODOP2L}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>160</td>
<td>mA</td>
</tr>
<tr>
<td>296 to 297</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>297</td>
<td>Supply Current (Right Port Active, Left Port Standby)</td>
<td>I_{OODOP2R}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 0.1</td>
<td>160</td>
<td>mA</td>
</tr>
<tr>
<td>297 to 298</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>SPEC. AND/OR TEST METHOD</th>
<th>TEST CONDITIONS</th>
<th>CHANGE LIMITS (Δ)</th>
<th>ABSOLUTE LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>Data Retention Current</td>
<td>t_{ODDR}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>± 5.0</td>
<td>-</td>
<td>40 μA</td>
</tr>
<tr>
<td>299</td>
<td>Data Retention</td>
<td>DR</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>373</td>
<td>Functional Test 4 (Nominal Inputs)</td>
<td>-</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>399</td>
<td>Address Access Time</td>
<td>t_{AA}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>55 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>-</td>
<td>45 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>401</td>
<td>Chip Select Access Time</td>
<td>t_{ACS}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>55 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>-</td>
<td>45 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>403</td>
<td>Byte Enable Access Time</td>
<td>t_{ABE}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>55 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>-</td>
<td>45 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>405</td>
<td>Output Enable Access Time</td>
<td>t_{AOE}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>30 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>-</td>
<td>25 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>407</td>
<td>Address Setup Time</td>
<td>t_{AS}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>409</td>
<td>Data Hold Time</td>
<td>t_{DH}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>411</td>
<td>Write Pulse Width</td>
<td>t_{WP}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>45 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>-</td>
<td>35 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>413</td>
<td>BUSY Access Time to Address</td>
<td>t_{BAA}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>45 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>-</td>
<td>35 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>415</td>
<td>BUSY Disable Time to Address</td>
<td>t_{BDA}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>40 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>-</td>
<td>30 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>417</td>
<td>BUSY Access Time to Chip Select</td>
<td>t_{BAC}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>40 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>-</td>
<td>30 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>419</td>
<td>BUSY Disable Time to Chip Select</td>
<td>t_{BDC}</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
<td>35 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 01, 02</td>
<td>-</td>
<td>-</td>
<td>25 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variants 03, 04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING (CONT'D)

<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>SPEC. AND/OR TEST METHOD</th>
<th>TEST CONDITIONS</th>
<th>CHANGE LIMITS (Δ)</th>
<th>ABSOLUTE LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>421</td>
<td>Write to BUSY Input</td>
<td>t_wB</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>423</td>
<td>Write Hold after BUSY</td>
<td>t_wH</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>30</td>
<td>ns</td>
</tr>
<tr>
<td>425</td>
<td>Interrupt Set Time</td>
<td>t_inS</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>40</td>
<td>ns</td>
</tr>
<tr>
<td>427</td>
<td>Interrupt Reset Time</td>
<td>t_inR</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>40</td>
<td>ns</td>
</tr>
</tbody>
</table>

Variants:
- 01, 02
- 03, 04
FIGURE 6 - BIAS CONDITIONS FOR IRRADIATION TESTING

NOTES
1. Input Protection Resistor = 1.0kΩ.
<table>
<thead>
<tr>
<th>No.</th>
<th>CHARACTERISTICS</th>
<th>SYMBOL</th>
<th>SPEC. AND/OR TEST METHOD</th>
<th>TEST CONDITIONS</th>
<th>ABSOLUTE LIMITS</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 27</td>
<td>Functional Test 1 (Nominal Inputs)</td>
<td>-</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28 to 35</td>
<td>Functional Test 2 (Worst Case Inputs)</td>
<td>-</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36 to 41</td>
<td>Functional Test 3 (Worst Case Outputs)</td>
<td>-</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>42 to 80</td>
<td>Input Current Low Level</td>
<td>(i_{IL})</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-5.0 (\mu)A</td>
</tr>
<tr>
<td>81 to 119</td>
<td>Input Current High Level</td>
<td>(i_{IH})</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>5.0</td>
<td>(\mu)A</td>
</tr>
<tr>
<td>120 to 155</td>
<td>Output Voltage Low Level</td>
<td>(V_{OL})</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>156 to 191</td>
<td>Output Voltage High Level</td>
<td>(V_{OH})</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>229 to 260</td>
<td>Output Leakage Current Third State (Low Level Applied)</td>
<td>(i_{OZL})</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-5.0 (\mu)A</td>
</tr>
<tr>
<td>261 to 292</td>
<td>Output Leakage Current Third State (High Level Applied)</td>
<td>(i_{OZH})</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>-</td>
<td>-5.0 (\mu)A</td>
</tr>
<tr>
<td>293</td>
<td>Supply Current (Standby)</td>
<td>(I_{DDS1})</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>294</td>
<td>Supply Current (Power Down)</td>
<td>(I_{DDS2})</td>
<td>As per Table 2</td>
<td>As per Table 2</td>
<td>5.0</td>
<td>mA</td>
</tr>
<tr>
<td>295</td>
<td>Supply Current (Both Ports Active)</td>
<td>(I_{DDOP})</td>
<td>As per Table 2</td>
<td>As per Table 2 Variants 01, 02 Variants 03, 04</td>
<td>300</td>
<td>350 mA</td>
</tr>
</tbody>
</table>
APPENDIX 'A'

AGREED DEVIATIONS FOR MATRA-MHS (F)

<table>
<thead>
<tr>
<th>ITEMS AFFECTED</th>
<th>DESCRIPTION OF DEVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para. 4.2.2</td>
<td>Para. 9.9.3, "Electrical Measurements at Room Temperature". May be performed at High Temperature.</td>
</tr>
<tr>
<td>Para. 4.2.4 and 4.2.5</td>
<td>Para. 9.9.4, "Electrical Measurements at Room Temperature". May be performed in accordance with Table 2, but Parameter Drift Values must be calculated in accordance with Table 6 of this specification</td>
</tr>
</tbody>
</table>
The following test patterns may be used:

1. **CEDES Pattern**

```
START
  \[ I = 0 \]
  \[ J = 0 \]
  WRITE LEFT (I, J), DATA
  \[ J = J + 1 \]
  N
  J = J max?
  \[ I = I + 1 \]
  N
  I = I max?
  \[ I = 0 \]
  \[ J = 0 \]
  READ LEFT (I, J), DATA
  \[ J = J + 1 \]
  N
  J = J max?
  \[ I = I + 1 \]
  N
  I = I max?
GO TO SUITE
```

```
SUITE
  \[ I = 0 \]
  \[ J = 0 \]
  WRITE LEFT (I, J), DATA (CS HIGH)
  \[ J = J + 1 \]
  N
  J = J max?
  \[ I = I + 1 \]
  N
  I = I max?
  \[ I = 0 \]
  \[ J = 0 \]
  READ LEFT (I, J), DATA
  \[ J = J + 1 \]
  N
  J = J max?
  \[ I = I + 1 \]
  N
  I = I max?
END
```

DATA FFH
\[I_{\text{max}} = 256 \]
\[J_{\text{max}} = 16 \]
2. **MARCH Pattern**

START

- $I = 0$
- $J = 0$

WRITE LEFT $(I, J), \text{DATA}$

- $J = J + 1$
- \(J \geq J_{\text{max}}? \)

- $I = I + 1$
- \(I \geq I_{\text{max}}? \)

- $I = 0$

READ LEFT $(I, J), \text{DATA}$

WRITE LEFT $(I, J), \text{DATA}$

- $J = J + 1$
- \(J \geq J_{\text{max}}? \)

- $I = I + 1$

- $I = I_{\text{max}}?$

GO TO SUITE

SUITE

- $I = 0$

READ LEFT $(I, J), \text{DATA}$

WRITE LEFT $(I, J), \text{DATA}$

- $J = J + 1$
- \(J \geq J_{\text{max}}? \)

- $I = I + 1$
- \(I \geq I_{\text{max}}? \)

- $I = I_{\text{max}}?$

END

DATA OOH

$I_{\text{max}} = 256$

$J_{\text{max}} = 16$
3. **GRAY CODE Pattern**

START

\[I = 0, J = 0 \]

WRITE LEFT \((I, J)\), @

\[I = I + 1 \]

\[I = I \text{ max?} \]

\[I = 0 \]

WRITE LEFT \((I, J)\), @

\[J = J + 1 \]

\[J = J \text{ max?} \]

\[I = 0, J = 0 \]

READ LEFT \((I, J)\), @

\[I = I + 1 \]

\[I = I \text{ max?} \]

\[I = 0 \]

READ LEFT \((I, J)\), @

\[J = J + 1 \]

\[J = J \text{ max?} \]

GO TO SUITE

SUITE

\[I = I \text{ max}, J = J \text{ max} \]

WRITE LEFT \((I, J)\), @

\[I = I - 1 \]

\[I = I \text{ max} \]

WRITE LEFT \((I, J)\), @

\[J = J - 1 \]

\[J = J \text{ max} \]

\[I = I \text{ max}, J = J \text{ max} \]

READ LEFT \((I, J)\), @

\[I = I - 1 \]

\[I = I \text{ max} \]

READ LEFT \((I, J)\), @

\[J = J - 1 \]

\[J = J \text{ max} \]

END

\[I \text{ max} = 255 \]
\[J \text{ max} = 15 \]
4. **BUSY Pattern**

TEST is good if BUSY Right is Low and BUSY Left is High.

![Flowchart for BUSY Pattern]

5. **INT Pattern**

Write FF port Right at @ 3FEH ⇒ Check INTERRUPT Left port is set (INT = 0).
Read XX port Left at @ 3FEH ⇒ Check INTERRUPT Right port is reset (INT = 1).

Write FF port Left at @ 3FFH ⇒ Check INTERRUPT Right port is set (INT = 0).
Read XX port Right at @ 3FFH ⇒ Check INTERRUPT Left port is reset (INT = 1).

Write FF port Right at @ 3FEH ⇒ Check INTERRUPT Left port not interpose (INT = 1).
Write FF port Left at @ 3FEH ⇒ Check INTERRUPT Right port not interpose (INT = 1).

Write FF port Right at @ 3FEH with (INT = 1) ⇒ Check INTERRUPT Left port is set (INT = 0).
Write FF port Left at @ 3FFH with (INT = 0) ⇒ Check INTERRUPT Right port is set (INT = 0).

Write XX port Left at @ 3FEH ⇒ Check INTERRUPT Right port not interpose (INT = 0).
Read XX port Right at @ 3FFH ⇒ Check INTERRUPT Left port not interpose (INT = 0).

RESET INTERRUPT TWO PORTS (INT = 1)

Write FF port Right at @ 3FEH ⇒ Check INTERRUPT Left port not interpose (INT = 1).
Write FF port Left at @ 3FFH ⇒ Check INTERRUPT Right port not interpose (INT = 1).

I max = 256
J max = 16
6. **L Pattern**

START

\[I = 0 \]

\[J = 0 \]

WRITE LEFT \((I, J), \) DATA

\[J = J + 1 \]

\[N \]

\[J = J \text{ max?} \]

\[I = I + 1 \]

\[N \]

\[I = I \text{ max?} \]

DATA = DATA + 1

\[Y \]

\[I = 1, J = 0? \]

DATA = A010H

\[I \text{ max} = 256 \]

\[J \text{ max} = 16 \]
7. SEMAPHORE Pattern

START

J = 0

WRITE LEFT (I, J), DATA

J = J + 1

N
J = J max?

I = 0

J = 0

WRITE LEFT (I, J), 0000H; READ LEFT (I, J), 0000H

WRITE RIGHT (I, J), 0000H; READ RIGHT (I, J), FFFFH

WRITE LEFT (I, J), 0001H; READ LEFT (I, J), FFFFH

WRITE LEFT (I, J), 0000H; READ LEFT (I, J), FFFFH

WRITE RIGHT (I, J), 0001H; READ RIGHT (I, J), FFFFH

WRITE LEFT (I, J), 0001H; READ LEFT (I, J), FFFFH

WRITE RIGHT (I, J), 0000H; READ RIGHT (I, J), 0000H

WRITE RIGHT (I, J), 0001H; READ RIGHT (I, J), FFFFH

WRITE LEFT (I, J), 0000H; READ LEFT (I, J), FFFFH

WRITE LEFT (I, J), 0000H; READ LEFT (I, J), FFFFH

J = J max?

GO TO SUITE

SUITE

I = 0

J = 0

WRITE LEFT (I, J), 0001H

READ RIGHT (I, J), FFFFH

END

I = FFH
J max = 8
8. DUAL-PORT Pattern

SEQ1

I = 0, J = 0

WRITE LEFT (I, J), DATA

J = J + 1

DATA = DATA

N

J = J max?

SEQ2

I = FFH, J = 0

WRITE LEFT (I, J), DATA

J = J + 1

DATA = DATA

N

J = J max?

REPEAT SEQ1 AND SEQ2 WITH READING BOTH PORTS AT THE SAME TIME

SEQ3

SEQ3

I = 0, J = 0

WRITE LEFT (I, J), DATA

I = I + 1

DATA = DATA

N

I = I max?

SEQ4

I = FFH, J = 0

WRITE LEFT (I, J), DATA

I = I - 16

DATA = DATA

N

I = -1

REPEAT SEQ3 AND SEQ4 WITH READING BOTH PORTS AT THE SAME TIME

SEQ5

DATA = FFFFH
I max = 256
J max = 8
8. DUAL-PORT Pattern (Cont'd)

SEQ5

\[I = \text{FOH}, J = 0 \]

WRITE LEFT \((I, J)\), DATA

\[J = J + 1 \]

DATA = DATA

N

J = J max?

SEQ6

\[I = \text{0FH}, J = 0 \]

WRITE LEFT \((I, J)\), DATA

\[I = I + 15 \]

\[J = J + 1 \]

DATA = DATA

N

J = J max?

REPEAT SEQ5 AND SEQ6 WITH READING BOTH PORTS AT THE SAME TIME

SEQ7

SEQ7

\[I = 0, J = 0 \]

WRITE LEFT \((I, J)\), \text{0000H}

\[I = I + 11H, J = J + 1 \]

DATA = DATA

N

I = I max?

SEQ8

\[I = 0, J = \text{FH} \]

WRITE LEFT \((I, J)\), DATA

\[I = I + 11H \]

\[J = J - 1 \]

DATA = DATA

N

J = -1

REPEAT SEQ7 AND SEQ8 WITH READING BOTH PORTS AT THE SAME TIME

END

DATA = FFFFH

I max = 256

J max = 8
9. **ARB – SLAVE Pattern**

SEQ1

- \(I = 0, J = 0 \)
- WRITE \((I, J), \text{DATA}\)
- \(I = I + 1 \)
- \(N \) if \(I = 8 \)
- SEQ2

SEQ2

- \(I = \text{FOH}, J = 0 \)
- WRITE \((I, J), \text{DATA}\)
- \(I = I + 1 \)
- \(N \) if \(I = \text{I max?} \)
- END

WRITE LEFT on SEQ1 and SEQ2 with \(\text{DATA} = 0000H \) and BUSY-L = High.
WRITE LEFT on SEQ1 and SEQ2 with \(\text{DATA} = \text{FFFFH} \) and BUSY-L = Low.

Remark: Timing relaxed rising edge busy left before rising edge write.

READ RIGHT on SEQ1 and SEQ2 with \(\text{DATA} = \text{FFFFH} \).
WRITE LEFT on SEQ1 and SEQ2 with \(\text{DATA} = 0000 \) and BUSY-L = High.
WRITE LEFT on SEQ1 and SEQ2 with \(\text{DATA} = \text{FFFFH} \) and BUSY-L = Low.

Remark: Timing BUSY-L in phase with WRITE-L (inhibit left port).
READ RIGHT on SEQ1 and SEQ2 with \(\text{DATA} = 0000H \).

WRITE RIGHT on SEQ1 and SEQ2 with \(\text{DATA} = 0000H \) and BUSY-R = High.
WRITE RIGHT on SEQ1 and SEQ2 with \(\text{DATA} = \text{FFFFH} \) and BUSY-R = Low.

Remark: Timing relaxed rising edge busy left before rising edge write.
READ LEFT on SEQ1 and SEQ2 with \(\text{DATA} = \text{FFFFH} \).
WRITE RIGHT on SEQ1 and SEQ2 with \(\text{DATA} = 0000 \) and BUSY-R = High.
WRITE RIGHT on SEQ1 and SEQ2 with \(\text{DATA} = \text{FFFFH} \) and BUSY-R = Low.

Remark: Timing BUSY-R in phase with WRITE-R (inhibit right port).
READ LEFT on SEQ1 and SEQ2 with \(\text{DATA} = 0000H \).
10. ARB - MASTER Pattern

WRITE RIGHT on SEQ1 and SEQ2 with DATA = 0000H and BUSY-R = High.
ATTEMPT TO WRITE RIGHT PORT with DATA = FFFFH and BUSY-R = Low.
READ RIGHT PORT with DATA = 0000 on SEQ1 and SEQ2.

WRITE RIGHT on SEQ1 and SEQ2 with DATA = FFFFH and BUSY-R = Low.
Remark: Timing relaxed rising edge busy left before rising edge write.
READ LEFT on SEQ1 and SEQ2 with DATA = FFFFH.
WRITE RIGHT on SEQ1 and SEQ2 with DATA = 0000 and BUSY-R = High.
WRITE RIGHT on SEQ1 and SEQ2 with DATA = FFFFH and BUSY-R = Low.
Remark: Timing BUSY-R in phase with WRITE-R (inhibit right port).
READ LEFT on SEQ1 and SEQ2 with DATA = 0000H.