

european space agency agence spatiale européenne

Pages 1 to 46

INTEGRATED CIRCUITS, SILICON MONOLITHIC, HCMOS 8-BIT SHIFT REGISTERS WITH 3 STATE OUTPUT REGISTERS, BASED ON TYPE 54HC595

ESA/SCC Detail Specification No. 9306/051

SRE

space components coordination group

			Approved by		
	Issue/Rev.	Date	SCCG Chairman	ESA Director General or his Deputy -	
e se	Issue 2	March 2002	71. 1800 _x	Azon	

PAGE 2

ISSUE 2

DOCUMENTATION CHANGE NOTICE

P	DOCUMENTATION CHANGE NOTICE					
Rev. Letter	Rev. Date	CHANGE Reference Item	Approved DCR No.			
		This Issue supercedes Issue 1 and incorporates all modifications defined in Revisions 'A', 'B' and 'C' to Issue 1 and the changes agreed by the following DCRs: Cover Page : DCN : Para 1.3 : New sentence added Table 1(a) : New Variants 12 and 13 added Figure 2(a) : Side Elevattion corrected Dimension C amended in the drawing, Pin No. 20 location corrected Figure 2(b) : In the drawing, Pin No. 20 location corrected Figure 2(h) : New Figure added Notes to Figures : Title amended to read 2(a) to 2(h) Notes to Figures 3(a) : Titles amended to include SO Figure 3(a) : Titles amended to include SO Para 4.3.2 : Text amended to include SO Para 4.4.2 : New sentence inserted after 'No. 23500' Para 4.5.2 : Text amended to include SO Para 4.5.2 : Text amended to include SO Para 4.5.2 : New sentence inserted after 'No. 23500' Para 4.5.2 : Text amended to include SO Packages Appendix 'B' : Manufacturer reference changed : New deviations added	None None 221603 221564 221564 221564 221564 221564 221564 221564 221564 221564 221603 221603			
			,			

PAGE 3

ISSUE 2

TABLE OF CONTENTS

1.	GENERAL		Page 5
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10	Scope Component Type Variants Maximum Ratings Parameter Derating Information Physical Dimensions Pin Assignment Truth Table Circuit Schematic Functional Diagram Handling Precautions Input and Output Protection Networks		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2.	APPLICABLE DOCUMENTS		20
3.	TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS		20
4.	REQUIREMENTS		20
4.1 4.2	General Dovintions from Consciention		20
4.2.1	Deviations from Generic Specification Deviations from Special In-process Controls		20
4.2.2 4.2.3	Deviations from Final Production Tests Deviations from Burn-in Tests		20
4.2.4	Deviations from Qualification Tests		20
4.2.5	Deviations from Lot Acceptance Tests		20
4.3	Mechanical Requirements		21
4.3.1	Dimension Check		21
4.3.2	Weight		21
4.4	Materials and Finishes		21
4.4.1	Case		21 21
4.4.2	Lead Material and Finish		21
4.5	Marking		21
<i>4.</i> 5.1	General		21
4.5.2	Lead Identification		22
4.5.3	The SCC Component Number		22
4.5.4	Traceability Information		22
4.6	Electrical Measurements		22
4.6.1 4.6.2	Electrical Measurements at Room Temperature		22
4.6.2 4.6.3	Electrical Measurements at High and Low Temperatures		22
4.7	Circuits for Electrical Measurements Burn-in Tests		22
4.7.1	Parameter Drift Values		22
4.7.2	Conditions for H.T.R.B. and Power Burn-in		22
4.7.3	Electrical Circuits for H.T.R.B. and Power Burn-in		22
4.8	Environmental and Endurance Tests		22
4.8.1	Electrical Measurements on Completion of Environmental Tests	~ ~	42
4.8.2	Electrical Measurements at Intermediate Points during Endurance Tests		42
4.8.3	Electrical Measurements on Completion of Endurance Tests		42
4.8.4	Conditions for Operating Life Tests		42
4.8.5	Electrical Circuits for Operating Life Tests	-	42
4.8.6	Conditions for High Temperature Storage Test		42
	· · · · · · · · · · · · · · · · · · ·		42

PAGE 4

4.9 4.9.1 4.9.2 4.9.3	Total Dose Irradiation Testing Application Bias Conditions Electrical Measurements	<u>Page</u> 42 42 42 42
TABLE	<u>s</u>	
1(a) 1(b) 2 3 4 5(a) 5(b) 5(c) 6 7	Type Variants Maximum Ratings Electrical Measurements at Room Temperature - d.c. Parameters Electrical Measurements at Room Temperature - a.c. Parameters Electrical Measurements at High and Low Temperatures Parameter Drift Values Conditions for Burn-in High Temperature Reverse Bias, N-Channels Conditions for Burn-in High Temperature Reverse Bias, P-Channels Conditions for Power Burn-in and Operating Life Test Electrical Measurements on Completion of Environmental Tests and at Intermediate Points and on Completion of Irradiation Testing Electrical Measurements During and on Completion of Irradiation Testing	6 6 23 27 30 37 38 38 39 41
1 2 3(a) 3(b) 3(c) 3(d) 3(e) 4 5(a) 5(b) 5(c) 6	Not applicable Physical Dimensions Pin Assignment Truth Table Circuit Schematic Functional Diagram Input and Output Protection Networks Circuits for Electrical Measurements Electrical Circuit for Burn-in High Temperature Reverse Bias, N-Channels Electrical Circuit for Burn-in High Temperature Reverse Bias, P-Channels Electrical Circuit for Power Burn-in and Operating Life Test Bias Conditions for Irradiation Testing	7 16 17 18 18 19 33 40 40 40
APPEN	DICES (Applicable to specific Manufacturers only)	
'A' 'B'	AGREED DEVIATIONS FOR TEXAS INSTRUMENTS (F) AGREED DEVIATIONS FOR STMICROELECTRONICS (F)	45 46

PAGE

ISSUE 2

5

1. <u>GENERAL</u>

1.1 SCOPE

This specification details the ratings, physical and electrical characteristics, test and inspection data for a silicon, monolithic, high speed CMOS 8-Bit Shift Register with 3-State Output Registers, based on Type 54HC595. It shall be read in conjunction with ESA/SCC Generic Specification No. 9000, the requirements of which are supplemented herein.

1.2 <u>COMPONENT TYPE VARIANTS</u>

Variants of the basic type integrated circuits specified herein, which are also covered by this specification, are given in Table 1(a).

1.3 MAXIMUM RATINGS

The maximum ratings, which shall not be exceeded at any time during use or storage, applicable to the integrated circuits specified herein, are as scheduled in Table 1(b).

Maximum ratings shall only be exceeded during testing to the extent specified in this specification and when stipulated in Test Methods and Procedures of the applicable ESA/SCC Generic Specification.

1.4 PARAMETER DERATING INFORMATION (FIGURE 1)

Not applicable.

1.5 PHYSICAL DIMENSIONS

As per Figure 2.

1.6 <u>PIN ASSIGNMENT</u>

As per Figure 3(a).

1.7 TRUTH TABLE

As per Figure 3(b).

1.8 CIRCUIT SCHEMATIC

As per Figure 3(c).

1.9 FUNCTIONAL DIAGRAM

As per Figure 3(d).

1.10 HANDLING PRECAUTIONS

These devices are susceptible to damage by electrostatic discharge. Therefore, suitable precautions shall be employed for protection during all phases of manufacture, testing, packaging, shipment and any handling.

These components are Categorised as Class 2 with a Minimum Critical Path Failure Voltage of 2500 Volts.

1.11 <u>INPUT AND OUTPUT PROTECTION NETWORKS</u>

Protection networks shall be incorporated into each input and output as shown in Figure 3(e).

PAGE 6

TABLE 1(a) - TYPE VARIANTS

VARIANT	CASE	FIGURE	LEAD MATERIAL AND/OR FINISH
01	FLAT	2(a)	G2 or G8
02	FLAT	2(a)	G4
03	D.I.L.	2(b)	G2 or G8
04	D.I.L.	2(b)	G4
05	CHIP CARRIER	2(c)	2
06	FLAT	2(d)	G4
07	D.I.L.	2(e)	G4
08	CHIP CARRIER	2(f)	7
09	CHIP CARRIER	2(f)	4
10	D.I.L.	2(g)	G2
11	D.I.L.	2(g)	G4
12	SO CERAMIC	2(h)	G2
13	SO CERAMIC	2(h)	G4

TABLE 1(b) - MAXIMUM RATINGS

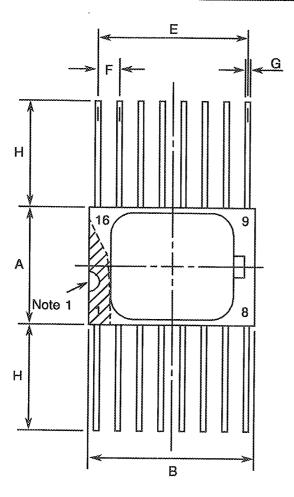
•					
NO.	CHARACTERISTICS	SYMBOL	MAXIMUM RATINGS	UNITS	REMARKS
1	Supply Voltage	V _{DD}	-0.5 to +7.0	V	Note 1
2	Input Voltage	V _{IN}	-0.5 to V _{DD} + 0.5	V	Notes 1, 2
3	Output Voltage	V _{OUT}	-0.5 to V _{DD} +0.5	V	Notes 1, 3
4	Device Dissipation (Continuous)	P _D	420	mW	Note 4
5	Supply Current	I _{DDop}	70	mA	
6	Operating Temperature Range	Тор	-55 to +125	°C	T _{amb}
7	Storage Temperature Range	T _{stg}	-65 to +150	°C	***************************************
8	Soldering Temperature For FP and DIP For CCP	T _{sol}	+ 265 + 245	°C	Note 5 Note 6

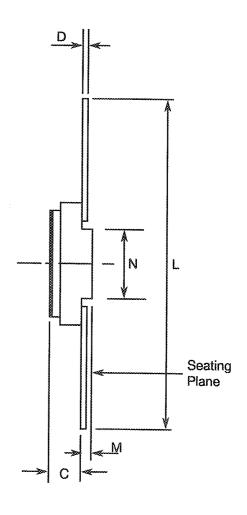
NOTES

- 1. Device is functional for $2.0V \le V_{DD} \le 6.0V$.
- 2. Input current limited to $I_{IC} = \pm 20 \text{mA}$.
- 3. Output current limited to $I_{OUT} = \pm 35 mA$.
- 4. The maximum device dissipation is determined by I_{DDop} max. (70mA) x 6.0V.
- 5. Duration 10 seconds maximum at a distance of not less than 1.5mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.
- 6. Duration 5 seconds maximum and the same terminal shall not be resoldered until 3 minutes have elapsed.

FIGURE 1 - PARAMETER DEPATING INFORMATION

Not applicable.



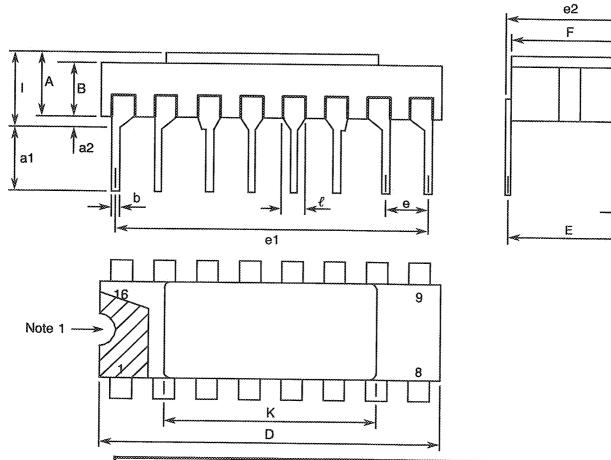

PAGE

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS

FIGURE 2(a) - FLAT PACKAGE, 16-PIN

SYMBOL	MILLIMETRES			
STWIDGE	MIN	MAX	NOTES	
A	6.75	7.06		
В	9.76	10.14		
C	1.49	1.95		
D	0.10	0.15	8	
E	8.76	9.01		
F	1.27 TY	/PICAL	5, 9	
G	.0.38	0.48	8	
Н	6.0	•	8	
L	18.75	22.0	~ ~ *	
M	0.33	0.43	ı	
N	- 4.31 TY			



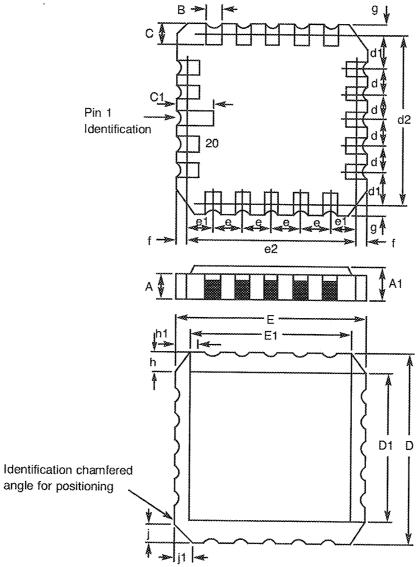
PAGE 8

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(b) - DUAL-IN-LINE PACKAGE, 16-PIN

SYMBOL	MILLIMETRES		MATEC
01141802	MIN	MAX	NOTES
A	2.10	2.54	***************************************
a1	3.0	3.70	
a2	0.63	1,14	3
В	1.82	2.23	
b	0.40	0.50	8
b1	0.20	0.30	8
D	18.79	19.20	
E	7.36	7.87	
е	2.54 TY	PICAL	6, 9
91	17.65	17.90	
e2	7.62	8.12	
F	7.11	7.62	
l		3.70 ~	
К	10.90	12.10	800000
l	1.27 TŶPICAL		8


PAGE

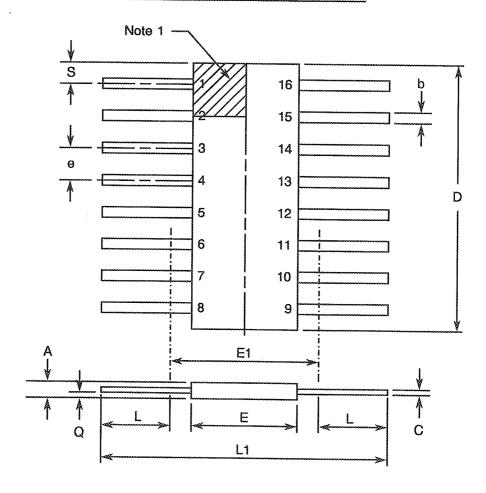
ISSUE 2

9

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(c) - CHIP CARRIER - 20-TERMINAL

DIMENSIONS	MILLIMETRES		NOTES
	MIN	MAX	NOTED
Α	1.14	1.95	***************************************
A1	1.63	2.36	
B	0.55	0.72	3
	1.06	1.47	3
C ₁	1.91	2.41	
ומ	8.67	9.09	
, .,	7.21	7.52	
d, d1 d2	1.27	TYPICAL	4
uz E	7.62	TYPICAL_	~ .
E1	-8.67 7.21	9.09	
e, e1	· ·	7.52	,
e2	1.27 7.62	TYPICAL TYPICAL	4
	7.02	0.76	
^{†,} g h, h1	1.01	TYPICAL	_
i. i1	0.51	TYPICAL	6
1, 1,			3



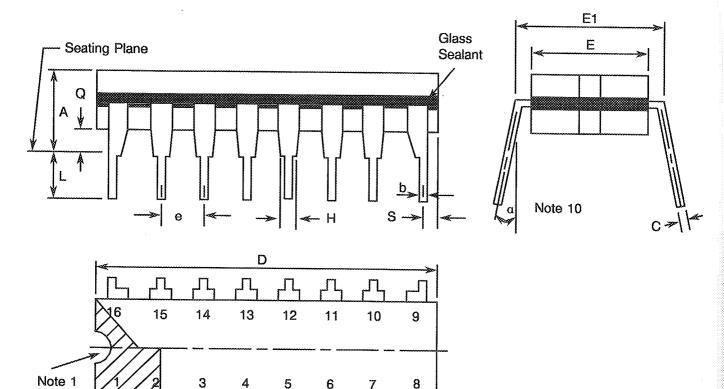
PAGE 10

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(d) - FLAT PACKAGE, 16-PIN

SYMBOL	MILLIMETRES		
STRIBUL	MIN	MAX	NOTES
Α	1.27	2.03	***************************************
b	0.38	0.56	8
С	0.08	0.23	8
D	9.42	10.16	4
E	6.27	7.24	
E1	7.00 TY	PICAL	4
е	1.27 T	/PICAL	5, 9
L	7.87	8.89	8
L1	23.88	24.38	
Q	· 0.51	1.02	2
S	0.25	0.64	7



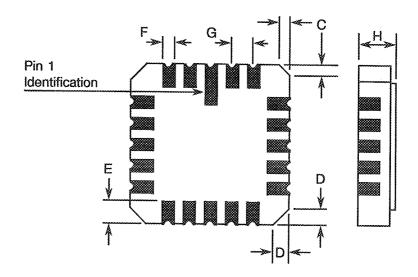
PAGE 11

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(e) - DUAL-IN-LINE PACKAGE, 16-PIN

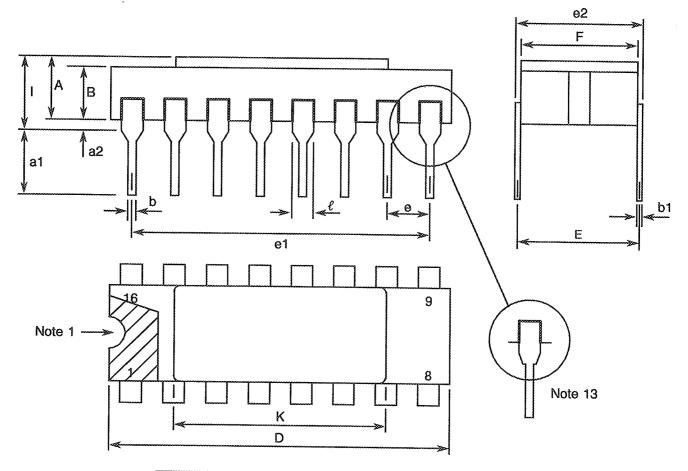
MILLIMETRES				
SYMBOL	IVIILLIV	MILLIME (RES		
0000000	MIN	MAX	NOTES	
А	-	5.08	***************************************	
b	0.38	0.66	8	
b1		1.78	8	
С	0.20	0.44	8	
D	19.18	19.94	4	
E	6.22	7.62	4	
E1	7.37	8.13		
е	2.54 TY	/PICAL	6, 9	
F	1,27 T	YPICAL		
H	9.76	~		
L	3.30	5.08 _	. 8	
Q	0.51	~	3	
S	0.38	1.27	7 '	
α	0°	15°	10	


PAGE 12

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(f) - SQUARE CHIP CARRIER PACKAGE (3 LAYER BASE), 20-TERMINAL

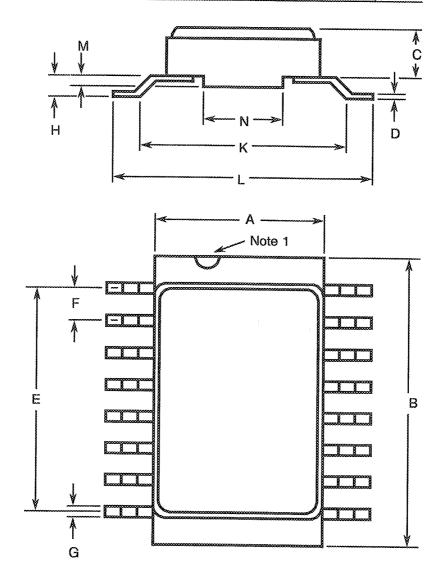

SYMBOL	MILLIMETRES		V.C.J.L.C.
01111002	MIN	MAX	NOTES
Α	8.69	9.09	***************************************
В	7.80	9.09	
C	0.25	0.51	11
D	0.89	1.14	12
E	1.14	1.40	8
F	0.56	0.71	8
G	- 1.27 T	5, 9	
Н	1,63	2.54	,

PAGE 13 ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(g) - DUAL-IN-LINE PACKAGE, 16-PIN

SYMBOL	MILLIM	ETRES	NOTEO
CTIVIDOL	MIN	MAX	NOTES
A	2.10	2.71	
a1	3.00	3.70	
a2	0.63	1.14	3
В	1.82	2.39	
b	0.40	0.50	8
b1	0.20	0.30	8
D	20.06	20.58	
E	7.36	7.87	
е	2.54 T	YPICAL	6, 9
e1	17.65	17.90	
e2	7.62	8.12	
F	- 7.29	7.70	Ì
l	. •	3.83	
К	10.90	12.10	
·l	1.14	1.50	8


PAGE

ISSUE 2

14

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

FIGURE 2(h) - SMALL OUTLINE CERAMIC PACKAGE, 16-PIN

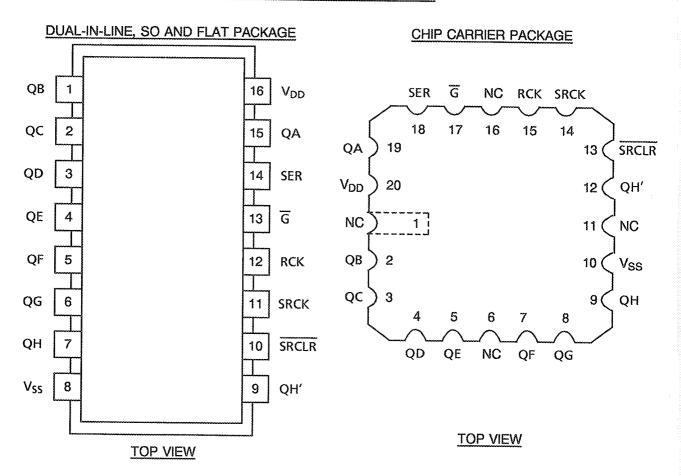
SYMBOL		ETRES	NOTEO
O I IVIDOL	MIN.	MAX.	NOTES
A	6.75	7.06	***************************************
В	9.76	10.14	***************************************
C	1.49	1.95	***************************************
D	0.102	0.152	8
E	8.76	9.01	***************************************
F	1.27 TY	PICAL	5, 9
G	0.38	0.48	8
Н	0.60	0.90	8
K	9.00 TYI	PICAL	***************************************
L	10	10.65	***************************************
M	0.33	0.43	**************************************
N	4.31 TY	PICAL	

PAGE 15

ISSUE 2

FIGURE 2 - PHYSICAL DIMENSIONS (CONTINUED)

NOTES TO FIGURES 2(a) TO 2(h) INCLUSIVE


- 1. Index area: a notch, letter or dot shall be located adjacent to Pin 1 and shall be within the shaded area shown. For chip carrier packages the index shall be as defined in Figures 2(c) and 2(f).
- Dimension Q shall be measured at the point of exit of the lead from the body.
- The dimension shall be measured from the seating plane to the base plane.
- 4. The dimension allows for off-centre lids, meniscus and glass overrun.
- 5. The true position pin or terminal spacing is 1.27mm between centrelines. Each pin or terminal centreline shall be located within ±0.13mm of it's true longitudinal position relative to Pin 1 and the highest pin number.
- 6. The true position pin spacing is 2.54mm between centrelines. Each pin centreline shall be located within ±0.25mm of it's true longitudinal position relative to Pin 1 and the highest pin number.
- 7. Applies to all 4 corners.
- 8. All leads or terminals.
- 9. 14 spaces for flat, SOand dual-in-line packages.16 spaces for chip carrier packages.
- 10. Lead centreline when α is 0°.
- 11. Index corner only 2 dimensions.
- 12. 3 non-index corners 6 dimensions.
- 13. For all pins, either pin shape may be supplied.

PAGE 16

ISSUE 2

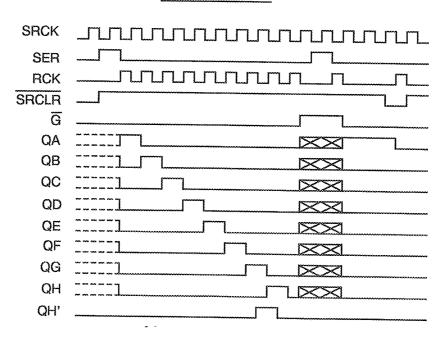
FIGURE 3(a) - PIN ASSIGNMENT

FLAT PACKAGE, SO AND DUAL-IN-LINE TO CHIP CARRIER PIN ASSIGNMENT

FLAT PACKAGE, SO AND **DUAL-IN-LINE PIN OUTS** CHIP CARRIER PIN OUTS 2

PAGE 17

ISSUE 2


FIGURE 3(b) - TRUTH TABLE

		INPUTS	000000000000000000000000000000000000000	**************************************	
SER	SRCK	SRCLR	RCK	G	FUNCTION
Χ	Χ	Х	Χ	Н	QA THRU QH OUTPUTS DISABLE
Χ	Χ	Χ	Χ	L	QA THRU QH OUTPUTS ENABLE
Χ	Χ	L	Χ	Χ	SHIFT REGISTER IS CLEARED
L.	ſ	H	Х	Х	FIRST STAGE OF S.R. BECOMES "L". OTHER STAGES STORE THE DATA OF PREVIOUS STAGE, RESPECTIVELY
H		H	Х	Х	FIRST STAGE OF S.R. BECOMES "H". OTHER STAGES STORE THE DATA OF PREVIOUS STAGE, RESPECTIVELY
Χ	—	Н	Χ	Χ	STATE OF S.R. IS NOT CHANGED
Χ	Χ	Χ	ſ	Χ	S.R. DATA IS STORED INTO STORAGE REGISTER
Χ	Х	Х		Х	STORAGE REGISTER STAGE IS NOT CHANGED

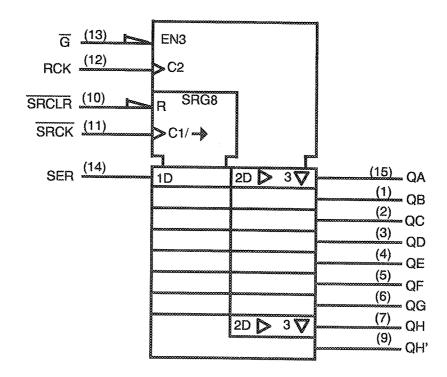
NOTES

- 1. Logic Level Definitions: L = Low Level, H = High Level, X = Irrelevant.
- 2. T = Transition, Low to High, = Transition, High to Low.
- 3. Shift = Content of each internal register shifts towards serial outputs. Data at serial input is shifted into first register.

TIMING DIAGRAM

NOTES

1. \boxtimes = High Impedance.


PAGE 18

ISSUE 2

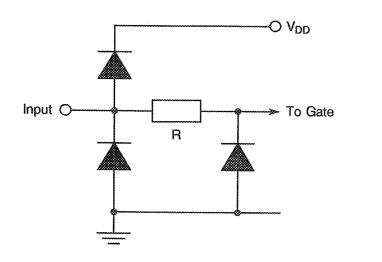
FIGURE 3(c) - CIRCUIT SCHEMATIC

Not applicable.

FIGURE 3(d) - FUNCTIONAL DIAGRAM

NOTES

1. Pin numbers shown are for DIP and FP.


PAGE 19

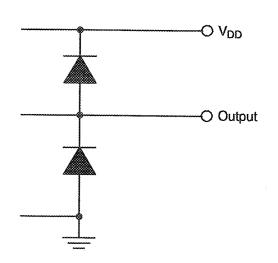
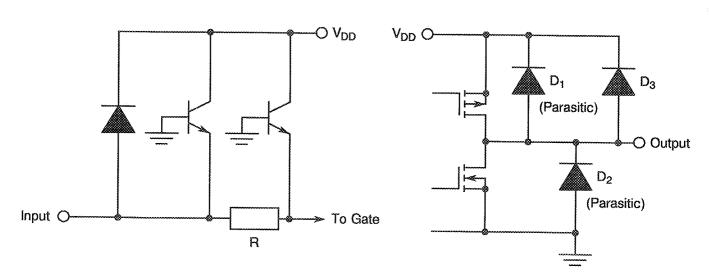

ISSUE 2

FIGURE 3(e) - INPUT AND OUTPUT PROTECTION NETWORKS

INPUT PROTECTION

OUTPUT PROTECTION



VARIANTS 01 TO 05 AND 10 TO 11

INPUT PROTECTION

OUTPUT PROTECTION

VARIANTS 06 TO 09

PAGE 20

ISSUE 2

2. <u>APPLICABLE DOCUMENTS</u>

The following documents form part of this specification and shall be read in conjunction with it:-

- (a) ESA/SCC Generic Specification No. 9000 for Integrated Circuits.
- (b) MIL-STD-883, Test Methods and Procedures for Micro-electronics.

3. TERMS, DEFINITIONS, ABBREVIATIONS, SYMBOLS AND UNITS

For the purpose of this specification, the terms, definitions, abbreviations, symbols and units specified in ESA/SCC Basic Specification No. 21300 shall apply. In addition, the following symbols are used:

V_{IC} = Input Clamp Voltage.

Ic = Input Clamp Diode Current.

4. <u>REQUIREMENTS</u>

4.1 GENERAL

The complete requirements for procurement of the integrated circuits specified herein are stated in this specification and ESA/SCC Generic Specification No. 9000 for Integrated Circuits. Deviations from the Generic Specification, applicable to this specification only, are listed in Para. 4.2.

Deviations from the applicable Generic Specification and this Detail Specification, formally agreed with specific Manufacturers on the basis that the alternative requirements are equivalent to the ESA/SCC requirements and do not affect the components' reliability, are listed in the appendices attached to this specification.

4.2 <u>DEVIATIONS FROM GENERIC SPECIFICATION</u>

4.2.1 Deviations from Special In-process Controls

- (a) Para. 5.2.2, Total Dose Irradiation Testing: Shall be performed during irradiation qualification and maintenance of qualification.
- (b) Para. 5.2.2, Total Dose Irradiation Testing: Shall be performed during procurement on an irradiation lot acceptance basis at the total dose irradiation level specified in the Purchase Order.

4.2.2 <u>Deviations from Final Production Tests (Chart II)</u>

None.

4.2.3 Deviations from Burn-in Tests (Chart III)

None.

4.2.4 <u>Deviations from Qualification Tests (Chart IV)</u>

None.

PAGE 21

ISSUE 2

4.2.5 Deviations from Lot Acceptance Tests (Chart V)

None.

4.3 MECHANICAL REQUIREMENTS

4.3.1 <u>Dimension Check</u>

The dimensions of the integrated circuits specified herein shall be checked. They shall conform to those shown in Figure 2.

4.3.2 Weight

The maximum weight of the integrated circuits specified herein shall be 2.2 grammes for the dual-in-line package, 0.7 grammes for the flat and SO packages and 0.6 grammes for the chip carrier package.

4.4 MATERIALS AND FINISHES

The materials shall be as specified herein. Where a definite material is not specified, a material which will enable the integrated circuits specified herein to meet the performance requirements of this specification shall be used. Acceptance or approval of any constituent material does not guarantee acceptance of the finished product.

4.4.1 Case

The case shall be hermetically sealed and have a metal body with hard glass seals or a ceramic body and the lids shall be welded, brazed, preform-soldered or glass frit sealed.

4.4.2 Lead Material and Finish

For dual-in-line and flat packages, the material shall be Type 'G' with either Type '2', Type '4' or Type '2 or 8' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. For chip carrier packages the finish shall be Type '2', Type '4' or Type '7' in accordance with the requirements of ESA/SCC Basic Specification No. 23500. For SO ceramic packages, the material shall be Type 'G' with either Type '2' or Type '4' finish in accordance with the requirements of ESA/SCC Basic Specification No. 23500. (See Table 1(a) for Type Variants).

4.5 MARKING

4.5.1 General

The marking of all components delivered to this specification shall be in accordance with the requirements of ESA/SCC Basic Specification No. 21700. Each component shall be marked in respect of:-

- (a) Lead Identification.
- (b) The SCC Component Number.
- (c) Traceability Information.

4.5.2 Lead Identification

For dual-in-line, flat and SO packages, an index shall be located at the top of the package in the position defined in Note 1 to Figure 2 or, alternatively, a tab may be used to identify Pin No. 1. The pin numbering must be read with the index or tab on the left-hand side. For chip carrier packages, the index shall be as defined by Figures 2(c) and 2(f).

PAGE 22

ISSUE 2

4.5.3 The SCC Component Number

Each component shall bear the SCC Component Number which shall be constituted and marked as follows:

	930605101B F
Detail Specification Number	
Type Variant (see Table 1(a))	
Testing Level (B or C, as applicable)	
Total Dose Irradiation Level (if applicable)	***************************************

The Total Dose Irradiation Level designation shall be added for those devices for which a sample has been successfully tested to the level in question. For these devices, a code letter shall be added in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

4.5.4 <u>Traceability Information</u>

Each component shall be marked in respect of traceability information in accordance with the requirements of ESA/SCC Basic Specification No. 21700.

4.6 <u>ELECTRICAL MEASUREMENTS</u>

4.6.1 <u>Electrical Measurements at Room Temperature</u>

The parameters to be measured in respect of electrical characteristics are scheduled in Table 2. Unless otherwise specified, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.6.2 <u>Electrical Measurements at High and Low Temperatures</u>

The parameters to be measured at high and low temperatures are scheduled in Table 3. The measurements shall be performed at $T_{amb} = +125 (+0.5)$ °C and -55 (+5.0) °C respectively.

4.6.3 <u>Circuits for Electrical Measurements</u>

Circuits and test sequences for use in performing electrical measurements listed in Tables 2 and 3 of this specification are shown in Figure 4.

4.7 BURN-IN TESTS

4.7.1 Parameter Drift Values

The parameter drift values applicable to H.T.R.B. and Power Burn-in are specified in Table 4 of this specification. Unless otherwise stated, measurements shall be performed at $T_{amb} = \pm 22 \pm 3$ °C. The parameter drift values (Δ) applicable to the parameters scheduled, shall not be exceeded. In addition to these drift value requirements, the appropriate limit value specified for a given parameter in Table 2 shall not be exceeded.

For H.T.R.B. Burn-in, the parameter drift values (Δ) shall be applied before the N-Channel (0 hours) and after the P-Channel (144 hours) burn-in.

4.7.2 Conditions for H.T.R.B. and Power Burn-in

The requirements for H.T.R.B. and Power Burn-in are specified in Section 7 of ESA/SCC Generic Specification No. 9000. The conditions for H.T.R.B. and Power Burn-in shall be as specified in Tables 5(a), 5(b) and 5(c) of this specification.

4.7.3 Electrical Circuits for H.T.R.B and Power Burn-in

Circuits for use in performing the H.T.R.B. and Power Burn-in tests are shown in Figures 5(a), 5(b) and 5(c) of this specification.

PAGE 23

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS

			J~~~~		~		The I bulked	
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD 883	TEST FIG.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP C = CCP)	LIM	IITS MAX	UNIT
1	Functional Test 1	~	-	3(b)	Verify Truth Table without Load. $V_{IL} = 0.3V, V_{IH} = 1.5V$ $V_{DD} = 2.0V, V_{SS} = 0V$ $t_r < 1.0\mu s, f = 10kHz (min)$ Note 1	**		-
2	Functional Test 2	ı	-	3(b)	Verify Truth Table without Load. $V_{IL} = 0.9V, V_{IH} = 3.15V$ $V_{DD} = 4.5V, V_{SS} = 0V$ $t_r = t_f < 500 \text{ns}$ $f = 10 \text{kHz (min)}$ Note 1	-	-	- -
3	Functional Test 3	-	-	3(b)	Verify Truth Table without Load. $V_{IL} = 1.2V, V_{IH} = 4.2V$ $V_{DD} = 6.0V, V_{SS} = 0V$ $t_r = t_f < 400 \text{ns}$ $f = 10 \text{kHz (min)}$ Note 1	-	-	•
4 to 5	Quiescent Current	I _{DD}	3005	4(a)	$V_{IL} = 0V, V_{IH} = 6.0V$ $V_{DD} = 6.0V, V_{SS} = 0V$ All Outputs Open (Pin D/F 16) (Pin C 20)	~	0.4	μΑ
6 to 10	Input Current Low Level	կլ	3009	4(b)	V _{IN} (Under Test) = 0V V _{IN} (Remaining Inputs) = 6.0V V _{DD} = 6.0V, V _{SS} = 0V (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	^	-50	nA
11 to 15	Input Current High Level	ИН	3010	4(c)	V _{IN} (Under Test) = 6.0V V _{IN} (Remaining Inputs) = 0V V _{DD} = 6.0V, V _{SS} = 0V (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	*	50	nA

PAGE 24 ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

Γ	T	~~~~				~~~		
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD		,	LIN	MITS	UNIT
			MIL-STD 883	FIG.	D/F = DIP AND FP C = CCP)	MIN	MAX	01411
16 to 24	Output Voltage Low Level 1	V _{OL1}	3007	4(d)	$V_{IL} = 0.3V$, $V_{IH} = 1.5V$ $I_{OL} = 20\mu A$ $V_{DD} = 2.0V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	-	0.1	٧
25 to 33	Output Voltage Low Level 2	V _{OL2}	3007	4(d)	$V_{IL} = 0.9V$, $V_{IH} = 3.15V$ $I_{OL} = 20\mu A$ $V_{DD} = 4.5V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	-	0.1	V
34 to 42	Output Voltage Low Level 3	V _{OL3}	3007	4(d)	V_{IL} = 1.2V, V_{IH} = 4.2V I_{OL} = 20 μ A V_{DD} = 6.0V, V_{SS} = 0V (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	<u>.</u>	0.1	٧
43 to 51	Output Voltage Low Level 4	V _{OL4}	3007	4(d)	V_{IL} = 0.9V, V_{IH} = 3.15V V_{DD} = 4.5V, V_{SS} = 0V I_{OL} = 4.0mA (Pin D/F 9) (Pin C 12) I_{OL} = 6.0mA (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	~	0.26	V
52 to 60	Output Voltage Low Level 5	V _{OL5}	3007	4(d)	V_{IL} = 1.2V, V_{IH} = 4.2V V_{DD} = 6.0V, V_{SS} = 0V I_{OL} = 5.2mA (Pin D/F 9) (Pin C 12) I_{OL} = 7.8mA (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	-	0.26	V
61 to 69	Output Voltage High Level 1	V _{OH1}	3006	4(e)	V_{IL} = 0.3V, V_{IH} = 1.5V I_{OH} = -20 μ A V_{DD} = 2.0V, V_{SS} = 0V (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	1.9	2	V
70 to 78	Output Voltage High Level 2	V _{OH2}	3006	4(e)	$V_{IL} = 0.9V$, $V_{IH} = 3.15V$ $I_{OH} = -20\mu A$ $V_{DD} = 4.5V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	4.4		V

PAGE 25

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

TO SAME TENDE AND THE WAY TO THE TENDENCE TO T								
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD	TEST FIG.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP	LIN	LIMÎTS	
			883		C = CCP)	MIN	MAX	
79 to 87	Output Voltage High Level 3	V _{ОНЗ}	3006	4(e)	$V_{IL} = 1.2V$, $V_{JH} = 4.2V$ $I_{OH} = -20\mu A$ $V_{DD} = 6.0V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	5.9	-	V
88 to 96	Output Voltage High Level 4	V _{OH4}	3006	4(e)	$\begin{array}{l} V_{IL} = 0.9 \text{V}, V_{IH} = 3.15 \text{V} \\ V_{DD} = 4.5 \text{V}, V_{SS} = 0 \text{V} \\ I_{OH} = -4.0 \text{mA} \\ (\text{Pin D/F 9}) \\ (\text{Pin C 12}) \\ I_{OH} = -6.0 \text{mA} \\ (\text{Pins D/F 1-2-3-4-5-6-7-15}) \\ (\text{Pins C 2-3-4-5-7-8-9-19}) \end{array}$	3.98	-	V
97 to 105	Output Voltage High Level 5	V _{OH5}	3006	4(e)	V_{IL} = 1.2V, V_{IH} = 4.2V V_{DD} = 6.0V, V_{SS} = 0V I_{OH} = -5.2mA (Pin D/F 9) (Pin C 12) I_{OH} = -7.8mA (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	5.48	• :	V
106	Threshold Voltage N-Channel	V _{THN}	-	4(f)	\overline{G} Input at Ground All Other Inputs: $V_{IN} = 5.0V$ $V_{DD} = 5.0V$, $I_{SS} = -10\mu$ A (Pin D/F 8) (Pin C 10)	-0.45	-1.45	V
107	Threshold Voltage P-Channel	V _{THP}	•	4(g)	G Input at Ground All Other Inputs: V _{IN} = -5.0Vdc V _{SS} = -5.0V, I _{DD} = 10μA (Pin D/F 16) (Pin C 20)	0.45	1.35	V
108 to 112	Input Clamp Voltage (to V _{SS})	V _{IC1}			I _{IN} (Under Test) = -0.1mA V _{DD} = Open, V _{SS} = 0V All Other Pins Open (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	-0.4	-0.9	V :

PAGE 26 ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - d.c. PARAMETERS (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	. 1		LIM	IITS	UNIT
			ł .		D/F = DIP AND FP C = CCP)	MIN	MAX	
113 to 117	Input ClampVoltage (to V _{DD})	V _{IC2}	•	4(h)	$I_{\rm IN}$ (Under Test) = 0.1mA $V_{\rm DD}$ = 0V, $V_{\rm SS}$ = Open, All Other Pins Open (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	0.4	0.9	V
118 to 125	Output Leakage Current Third State (Low Level Applied)	lozu	3006	4(i)	$V_{IN(G)} = 6.0V$ $V_{IN}(Remaining Inputs) = 0V$ $V_{OUT} = 0V$ $V_{DD} = 6.0V, V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	-	- 0.5	μΑ
126 to 133	Output Leakage Current Third State (High Level Applied)	lozн	3006	4(i)	$V_{IN(G)} = 6.0V$ $V_{IN}(Remaining Inputs) = 0V$ $V_{OUT} = 6.0V$ $V_{DD} = 6.0V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	N.	0.5	μA

NOTES

- 1. Maximum time to output comparator strobe 30µs.
- 2. Guaranteed but not tested.
- 3. Measurements shall be performed on a 100% basis go-no-go, with read and record on a sample basis, LTPD7 (32 pieces) after Chart III (Burn-in) Tests.
- 4. Measurement performed on a sample basis, LTPD 7 or lower (see Annexe I of ESA/SCC 9000).
- 5. A pulse, having the following conditions shall be applied to the clock input: V_P = 0V to V_{DD} Vdc. Maximum clock frequency f_(CL) requirement is considered met if proper output state changes occur with the pulse repetition rate set to that give in the "Limits" column.

PAGE 27

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS

Г		γ	r	·	-	·	**************	
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD	TEST FIG.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP	LIN	nits T	UNIT
			883		C = CCP)	MIN	MAX	
134 to 138	Input Capacitance	C _{IN}	3012	4(j)	V _{IN} (Not Under Test) = 0Vdc V _{DD} = V _{SS} = 0V Note 2 (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	-	10	pF
139	Propagation Delay Low to High, (SRCK to QH')	tPLH1	3003	4(k)	V_{IN} (Under Test) = Pulse Generator V_{IN} (Remaining Inputs) = Figure 3(b). V_{DD} = 4.5V, V_{SS} = 0V Note 3 Pins D/F Pins C 11 to 9 14 to 12	·	32	ns
140	Propagation Delay High to Low, (SRCK to QH')	[†] PHL1	3003	4(k)	V _{IN} (Under Test) = Pulse Generator V _{IN} (Remaining Inputs) = Figure 3(b) V _{DD} = 4.5V, V _{SS} = 0V Note 3 Pins D/F Pins C 11 to 9 14 to 12	•	32	ns
141	Propagation Delay Low to High, (RCK to QH)	^t PLH2	3003	4(k)	V _{IN} (Under Test) = Pulse Generator V _{IN} (Remaining Inputs) = Figure 3(b) V _{DD} = 4.5V, V _{SS} = 0V Note 3 Pins D/F 12 to 7 Pins C 15 to 9	-	35	ns
142	Propagation Delay High to Low, (RCK to QH)	t _{PHL2}	3003	4(k)	V _{IN} (Under Test) = Pulse Generator V _{IN} (Remaining Inputs) = Figure 3(b) V _{DD} = 4.5V, V _{SS} = 0V Note 3 Pins D/F Pins C 12 to 7 15 to 9	•	35	ns
143 	Propagation Delay High to Low (SRCLR to QH')	tphl3	3003	4(k)	V _{IN} (Under Test) = Pulse Generator V _{IN} (Remaining Inputs) = Figure 3(b) V _{DD} = 4.5V, V _{SS} = 0V Note 3 Pins D/F Pins C 10 to 9 13 to 12	*	35	ns

PAGE 28

ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

		·					~~~~~~	
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD	TEST FIG.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP	LIN	IITS	UNIT
			883		C = CCP)	MIN	MAX	
144	Transition Time Low to High	ttlH1	3004	4(k)	V _{IN} (Under Test) = Pulse Generator V _{IN} (Remaining Inputs) = Figure 3(b) V _{DD} = 4.5V, V _{SS} = 0V Note 3 (Pin D/F 9) (Pin C 12)	*	15	ns
145	Transition Time High to Low	[†] THL1	3004	4(k)	V _{IN} (Under Test) = Pulse Generator V _{IN} (Remaining Inputs) = Figure 3(b) V _{DD} = 4.5V, V _{SS} = 0V Note 3 (Pin D/F 9) (Pin C 12)	-	15	ns
146	Transition Time Low to High	[†] TLH2	3004	4(k)	V _{IN} (Under Test) = Pulse Generator V _{IN} (Remaining Inputs) = Figure 3(b) V _{DD} = 4.5V, V _{SS} = 0V Note 3 (Pin D/F 7) (Pin C 9)	-	12	ns
147	Transition Time High to Low	t _{THL2}	3004	4(k)	V _{IN} (Under Test) = Pulse Generator V _{IN} (Remaining Inputs) = Figure 3(b) V _{DD} = 4.5V, V _{SS} = 0V Note 3 (Pin D/F 7) (Pin C 9)	u e	12	ns
148	Output Enable Time High Impedance to Low Output (G to QA)	t _{PZL}	3004		V _{IN(G)} = Pulse Generator V _{IN} (Remaining Inputs) = 0V V _{DD} = 4.5V, V _{SS} = 0V Note 3 Pins D/F Pins C 13 to 15 17 to 19	-	30	ns

PAGE 29 ISSUE 2

TABLE 2 - ELECTRICAL MEASUREMENTS AT ROOM TEMPERATURE - a.c. PARAMETERS (CONT'D)

	T			γ		~~~~	~~~	
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	METHOD TEST (PINS UND D/F = DIF		LIN	1ITS	- UNIT
					D/F = DIP AND FP C = CCP)	MIN	MAX	0.0
149	Output Enable Time High Impedance to High Output (G to QA)	t _{PZH}	3004	4(k)	V _{IN(G)} = Pulse Generator V _{IN} (Remaining Inputs) = 0V V _{DD} = 4.5V, V _{SS} = 0V Note 3 <u>Pins D/F</u> <u>Pins C</u> 13 to 15 17 to 19	~	30	ns
150	Output Disable Time Low Output to High Impedance (G to QA)	t _{PLZ}	3004	4(k)	V _{IN(G)} = Pulse Generator V _{IN} (Remaining Inputs) = 0V V _{DD} = 4.5V, V _{SS} = 0V Note 3 Pins D/F Pins C 13 to 15 17 to 19	-	40	ns
151	Output Disable Time High Output to High Impedance (G to QA)	[†] РНZ	3004	4(k)	V _{IN(G)} = Pulse Generator V _{IN} (Remaining Inputs) = 0V V _{DD} = 4.5V, V _{SS} = 0V Note 3 <u>Pins D/F</u> <u>Pins C</u> 13 to 15 17 to 19	-	40	ns
152 to 153	Maximum Clock Frequency	f _(CL)	•	4(k)	Clock = Pulse Generator V _{DD} = 4.5V, V _{SS} = 0V Notes 4 and 5 (Pins D/F 11-12) (Pins C 14-15)	30	~	MHz

PAGE 30

ISSUE 2

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES

		ı	T	1		·	***************************************	,
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD	TEST FIG.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP	LIN	IITS	UNIT
			883	110.	C = CCP)	MIN	MAX	
1	Functional Test 1	-	-	3(b)	Verify Truth Table without Load. $V_{IL} = 0.3V, \ V_{IH} = 1.5V \\ V_{DD} = 2.0V, \ V_{SS} = 0V \\ t_r < 1.0 \mu s, \ f = 10 kHz \ (min) \\ Note 1$	#4		-
2	Functional Test 2	-	-	3(b)	Verify Truth Table without Load. $V_{IL} = 0.9V, V_{IH} = 3.15V$ $V_{DD} = 4.5V, V_{SS} = 0V$ $t_r = t_f < 500ns$ $f = 10kHz (min)$ Note 1	-	-	•
3	Functional Test 3	-	-	3(b)	Verify Truth Table without Load. $V_{IL} = 1.2V, V_{IH} = 4.2V$ $V_{DD} = 6.0V, V_{SS} = 0V$ $t_r = t_f < 400 \text{ns}$ $f = 10 \text{kHz (min)}$ Note 1	-	9	3
4 to 5	Quiescent Current	l _{DD}	3005	4(a)	V_{IL} = 0V, V_{IH} = 6.0V V_{DD} = 6.0V, V_{SS} = 0V All Outputs Open (Pin D/F 16) (Pin C 20)	^	8.0	μΑ
6 to 10	Input Current Low Level	I _{IL}	3009	4(b)	V _{IN} (Under Test) = 0V V _{IN} (Remaining Inputs) = 6.0V V _{DD} = 6.0V, V _{SS} = 0V (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	u	~1.0	μΑ
11 to 15	Input Current High Level	liH	3010	4(c)	V _{IN} (Under Test) = 6.0V V _{IN} (Remaining Inputs) = 0V V _{DD} = 6.0V, V _{SS} = 0V (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	-	1.0	μА

PAGE 31

ISSUE 2

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES (CONT'D)

NO.	CHARACTERISTICS	SYMBOL	TEST METHOD	TEST	,	LIN	IITS	UNIT
			MIL-STD 883	FIG.	D/F = DIP AND FP $C = CCP$		MAX	OWIT
16 to 24	Output Voltage Low Level 1	V _{OL1}	3007	4(d)	$V_{IL} = 0.3V$, $V_{IH} = 1.5V$ $I_{OL} = 20\mu A$ $V_{DD} = 2.0V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	-	0.1	V
25 to 33	Output Voltage Low Level 2	V _{OL2}	3007	4(d)	$V_{IL} = 0.9V$, $V_{IH} = 3.15V$ $I_{OL} = 20\mu A$ $V_{DD} = 4.5V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	-	0.1	V
34 to 42	Output Voltage Low Level 3	V _{OL3}	3007	4(d)	V_{IL} = 1.2V, V_{IH} = 4.2V I_{OL} = 20 μ A V_{DD} = 6.0V, V_{SS} = 0V (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	~	0.1	V
43 to 51	Output Voltage Low Level 4	V _{OL4}	3007	4(d)	V_{IL} = 0.9V, V_{IH} = 3.15V V_{DD} = 4.5V, V_{SS} = 0V I_{OL} = 4.0mA (Pin D/F 9) (Pin C 12) I_{OL} = 6.0mA (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	•	0.4	V :
52 to 60	Output Voltage Low Level 5	V _{OL5}	3007	4(d)	V_{IL} = 1.2V, V_{IH} = 4.2V V_{DD} = 6.0V, V_{SS} = 0V I_{OL} = 5.2mA (Pin D/F 9) (Pin C 12) I_{OL} = 7.8mA (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	-	0.4	V
61 to 69	Output Voltage High Level 1	V _{OH1}	3006	4(e)	$V_{IL} = 0.3V$, $V_{IH} = 1.5V$ $I_{OH} = -20\mu A$ $V_{DD} = 2.0V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	1.9	~	V
70 to 78	Output Voltage High Level 2	V _{OH2}	3006 	4(e)	$V_{IL} = 0.9V$, $V_{IH} = 3.15V$ $I_{OH} = -20\mu A$ $V_{DD} = 4.5V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	4.4		V

PAGE 32

ISSUE 2

TABLE 3 - ELECTRICAL MEASUREMENTS AT HIGH AND LOW TEMPERATURES (CONT'D)

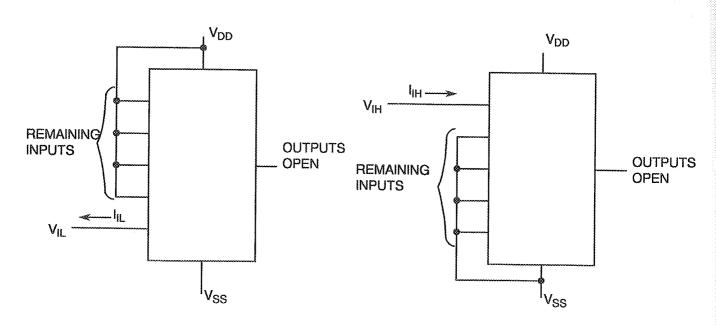
		T	·	T	THE PROPERTY OF SERVICE CONTROL			
NO.	CHARACTERISTICS	SYMBOL	TEST METHOD MIL-STD	TEST FIG.	TEST CONDITIONS (PINS UNDER TEST D/F = DIP AND FP	LIN	/ITS	UNIT
			883	, , ,	C = CCP)	MIN	MAX	
79 to 87	Output Voltage High Level 3	V _{ОНЗ}	3006	4(e)	V_{IL} = 1.2V, V_{IH} = 4.2V I_{OH} = -20 μ A V_{DD} = 6.0V, V_{SS} = 0V (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	5.9	~	V
88 to 96	Output Voltage High Level 4	V _{OH4}	3006	4(⊖)	$V_{IL} = 0.9V$, $V_{IH} = 3.15V$ $V_{DD} = 4.5V$, $V_{SS} = 0V$ $I_{OH} = -4.0$ mA (Pin D/F 9) (Pin C 12) $I_{OH} = -6.0$ mA (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	3.7	-	V : 1
97 to 105	Output Voltage High Level 5	V _{OH5}	3006	4(e)	V_{IL} = 1.2V, V_{IH} = 4.2V V_{DD} = 6.0V, V_{SS} = 0V I_{OH} = -5.2mA (Pin D/F 9) (Pin C 12) I_{OH} = -7.8mA (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	5.2	-	V
108 to 112	Input Clamp Voltage (to V _{SS})	V _{IC1}	-	4(h)	I _{IN} (Under Test) = -0.1mA V _{DD} = Open, V _{SS} = 0V All Other Pins Open (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	-0.1	-1.2	V
113 to 117	Input ClampVoltage (to V _{DD})	V _{IC2}		4(h)	$I_{\rm IN}$ (Under Test) = 0.1mA $V_{\rm DD}$ = 0V, $V_{\rm SS}$ = Open, All Other Pins Open (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	0.1	1.2	V
118 to 125	Output Leakage Current Third State (Low Level Applied)	lozu	3006	4(i)	$V_{IN(\overline{G})} = 6.0V$ $V_{IN}(Remaining Inputs) = 0V$ $V_{OUT} = 0V$ $V_{DD} = 6.0V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)	•	10 	Ац
1 <u>26</u> to* 133	Output Leakage Current Third State (High Level Applied)	lozн	3006 - - -		$V_{IN(G)} = 6.0V$ $V_{IN}(Remaining Inputs) = 0V$ $V_{OUT} = 6.0V$ $V_{DD} = 6.0V$, $V_{SS} = 0V$ (Pins D/F 1-2-3-4-5-6-7-15) (Pins C 2-3-4-5-7-8-9-19)		10.	Ац

PAGE 33

ISSUE 2

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS

FIGURE 4(a) - QUIESCENT CURRENT TEST TABLE


PATTERN	INPUTS		OUTPUTS							PACKAGE	D.C. SUPPLY						
NO.	10 13	11 14	12 15	13 17	14 18		1 2 3 4 5 6 7 9 15 2 3 4 5 7 8 9 12 19					DIL, FP CCP	8 10	16 20			
1	0	0	0	0	0					OPE	N	~~~~	********	V	***************************************	V _{SS}	V_{DD}
(3)	1	_1_		0	1		OPEN										
2	1			0	1		OPEN					*					

NOTES

- Figure 4(a) illustrates one series of test patterns. Any other pattern series must be agreed with the Qualifying Space Agency and shall be included as an Appendix. Logic Level Definitions: $1 = V_{IH} = V_{DD}$, $0 = V_{IL} = V_{SS}$, $1 = T_{CSS}$ = Transition, Low to High.
- 2.
- Repeat 8 times.

FIGURE 4(b) - INPUT CURRENT LOW LEVEL

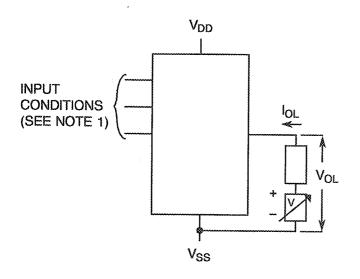
FIGURE 4(c) - INPUT CURRENT HIGH LEVEL

NOTES

1. Each input to be tested separately.

NOTES

1. Each input to be tested separately.


PAGE 34

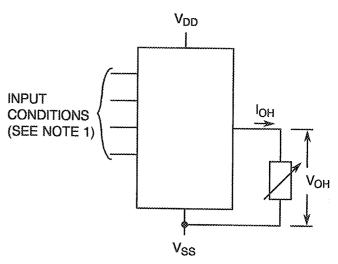
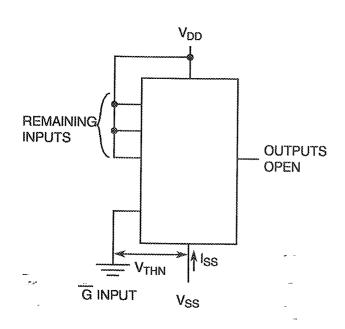

ISSUE 2

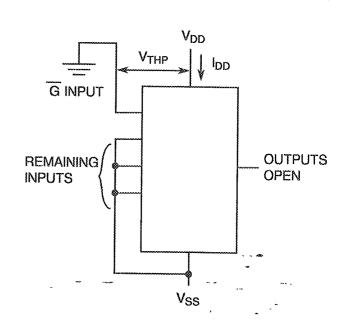
FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)

FIGURE 4(d) - OUTPUT VOLTAGE LOW LEVEL

FIGURE 4(e) - OUTPUT VOLTAGE HIGH LEVEL

NOTES

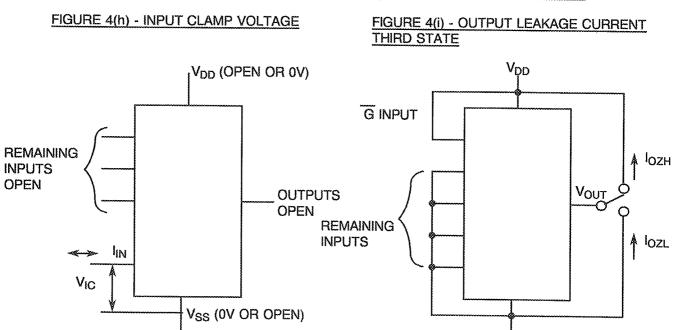

- V_{IN} = V_{IL} (max.) and/or V_{IH} (min.) as per Truth Table to give V_{OL}.
- 2. Each output to be tested separately.


NOTES

- V_{IN} = V_{IL} (max.) and/or V_{IH} (min.) as per Truth Table to give V_{OH}.
- 2. Each output to be tested separately.

FIGURE 4(f) - THRESHOLD VOLTAGE N-CHANNEL

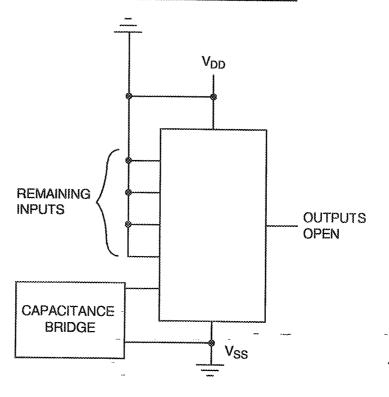
FIGURE 4(g) - THRESHOLD VOLTAGE P-CHANNEL



PAGE 35

ISSUE 2

FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)



NOTES 1. Each input to be tested separately.

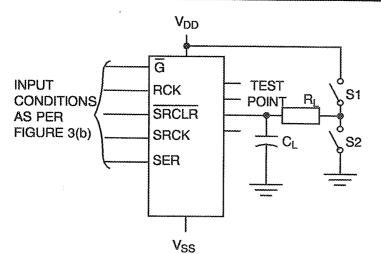
NOTES 1. Each output to be tested separately.

 V_{SS}

FIGURE 4(j) - INPUT CAPACITANCE

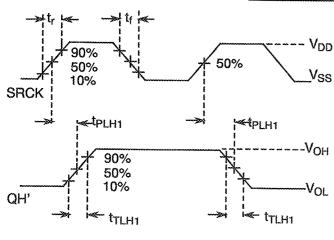
NOTES 1. Each input to be tested separately.

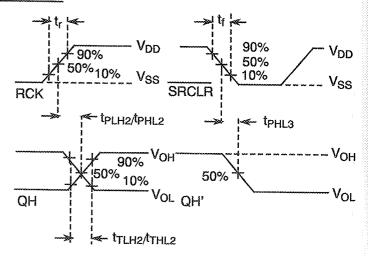
2. f = 100KHz to 1MHz.

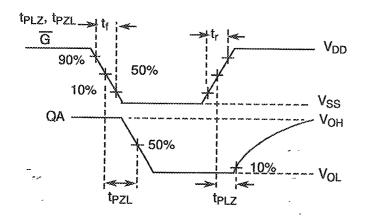


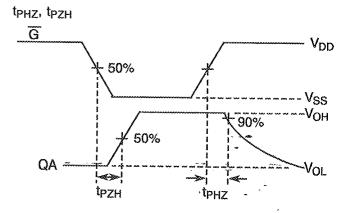
PAGE 36

ISSUE 2


FIGURE 4 - CIRCUITS FOR ELECTRICAL MEASUREMENTS (CONTINUED)


FIGURE 4(k) - PROPAGATION DELAY AND TRANSITION TIME




PARAMETER	RL	C _L	S ₁	S ₂
t _{PZH}	1kΩ	50pF	OPEN	CLOSED
t _{PZL}			CLOSED	OPEN
t _{PHZ}	1kΩ	50pF	OPEN	CLOSED
tpLZ			CLOSED	OPEN
t _{PHL} , t _{PLH} , t _{THL} , t _{TLH}	ų	50pF	OPEN	OPEN

VOLTAGE WAVEFORMS

<u>NOTES</u>

- 1. Pulse Generator: $V_p = 0$ to V_{DD} , t_r and $t_f \le 6$ ns, f = 1.0MHz minimum, 50% Duty Cycle, $Z_{OUT} = 50\Omega$.
- 2. $C_L = 50 pF \pm 5\%$ including scope, wiring and stray capacitance without package in test fixture.

PAGE 37

ISSUE 2

TABLE 4 - PARAMETER DRIFT VALUES

		T	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
NO.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR TEST METHOD	TEST CONDITIONS	CHANGE LIMITS (Δ)	UNIT
4 to 5	Quiescent Current	I _{DD}	As per Table 2	As per Table 2	±120	nA
6 to 10	Input Current Low Level	l _{IL}	As per Table 2	As per Table 2	± 20	nA
11 to 15	Input Current High Level	lн	As per Table 2	As per Table 2	±20	nA
43 to 51	Output Voltage Low Level 4	V _{OL4}	As per Table 2	As per Table 2	±0.026	٧
88 to 96	Output Voltage High Level 4	V _{OH4}	As per Table 2	As per Table 2	±0.2	V
106	Threshold Voltage N-Channel	V _{THN}	As per Table 2	As per Table 2	±0.3	V
107	Threshold Voltage P-Channel	V _{THP}	As per Table 2	As per Table 2	± 0.3	V

PAGE 38

ISSUE 2

TABLE 5(a) - CONDITIONS FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, N-CHANNELS

NO.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0-5)	°C
2	Outputs - (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	Vout	Open or V _{SS}	*
3	Inputs - (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	V _{IN}	V _{SS}	V
4	Positive Supply Voltage (Pin D/F 16) (Pin C 20)	V _{DD}	6.0(÷ 0-0.5)	V
5	Negative Supply Voltage (Pin D/F 8) (Pin C 10)	V _{SS}	0	V
6	Duration	t	72	Hours

NOTES

- 1. Input Protection Resistor = 680Ω min. to $47k\Omega$ max.
- 2. Output Load = $1k\Omega$ min. to $10k\Omega$ max.

TABLE 5(b) - CONDITIONS FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, P-CHANNELS

NO.	CHARACTERISTICS	SYMBOL	CONDITION	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0-5)	°C
2	Outputs - (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	V _{ОUТ}	Open or V _{DD}	-
3	Inputs - (Pins D/F 10-11-12-13-14) (Pins C 13-14-15-17-18)	V _{IN}	V _{DD}	V
4	Positive Supply Voltage (Pin D/F 16) (Pin C 20)	V _{DD}	6.0(+ 0-0.5)	V
5	Negative Supply Voltage (Pin D/F 8) (Pin C 10)	V _{SS}	0	V
6	Duration	t	72	Hours

NOTES

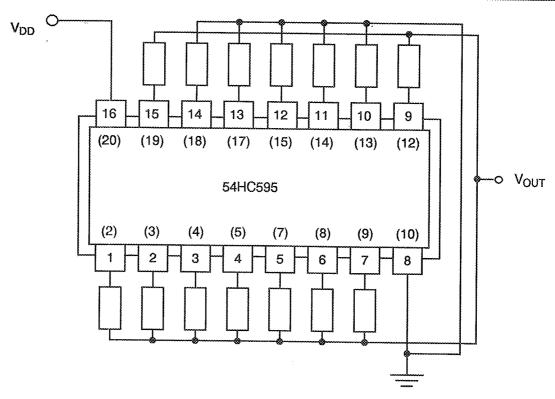
- 1. Input Protection Resistor = 680Ω min. to $47k\Omega$ max.
- _2. Output Load = $1k\Omega$ min. to $10k\Omega$ max.

PAGE 39

ISSUE 2

TABLE 5(c) - CONDITIONS FOR POWER BURN-IN AND OPERATING LIFE TEST

NO.	CHARACTERISTICS	SYMBOL	CONDITIONS	UNIT
1	Ambient Temperature	T _{amb}	+ 125(+ 0-5)	°C
2	Outputs - (Pins D/F 1-2-3-4-5-6-7-9-15) (Pins C 2-3-4-5-7-8-9-12-19)	V _{OUT}	V _{DD}	V
3	Inputs - (Pins D/F 10-14) (Pins C 13-18)	V _{IN}	V _{DD}	V
4	Inputs - (Pins D/F 11-12) (Pins C 14-15)	V _{IN}	V _{GEN1}	Vac
5	Input - (Pin D/F 13) (Pin C 17)	V _{IN}	V _{GEN2}	Vac
6	Pulse Voltage	V _{GEN}	0V to V _{DD}	Vac
7	Pulse Frequency Square Wave	f _{GEN1} f _{GEN2}	100k \pm 10% 50k \pm 10% 50 \pm 15% Duty Cycle $t_r = t_f \le$ 400ns	Hz
8	Positive Supply Voltage (Pin D/F 16) (Pin C 20)	V _{DD}	6.0(+ 0-0.5)	٧
9	Negative Supply Voltage (Pin D/F 8) (Pin C 10)	V _{SS}	0	V


- NOTES 1. Input Protection Resistor = 680Ω min. to $47k\Omega$ max.
- 2. Output Load = $1k\Omega$ min. to $10k\Omega$ max.

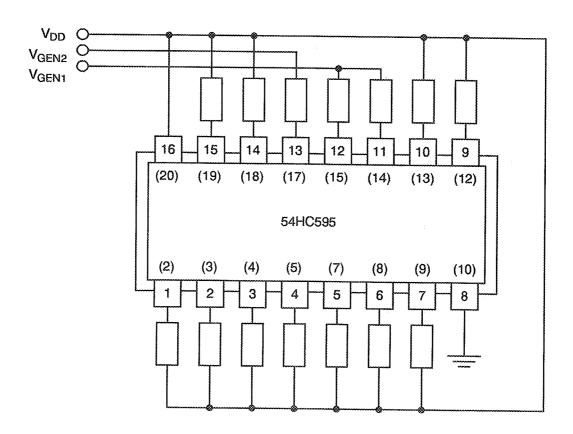
PAGE 40

ISSUE 2

FIGURE 5(a) - ELECTRICAL CIRCUIT FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, N-CHANNELS

NOTES 1. Pin numbers in parenthesis are for the chip carrier package.

FIGURE 5(b) - ELECTRICAL CIRCUIT FOR BURN-IN HIGH TEMPERATURE REVERSE BIAS, P-CHANNELS


NOTES 1. Pin numbers in parenthesis are for the chip carrier package.

PAGE 41

ISSUE 2

FIGURE 5(c) - ELECTRICAL CIRCUIT FOR POWER BURN-IN AND OPERATING LIFE TEST

NOTES 1. Pin numbers in parenthesis are for the chip carrier package.

PAGE 42

ISSUE 2

4.8 <u>ENVIRONMENTAL AND ENDURANCE TESTS (CHARTS IV AND V OF ESA/SCC GENERIC SPECIFICATION NO. 9000)</u>

4.8.1 <u>Electrical Measurements on Completion of Environmental Tests</u>

The parameters to be measured on completion of environmental tests are scheduled in Table 6. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22\pm3$ °C.

4.8.2 <u>Electrical Measurements at Intermediate Points during Endurance Tests</u>

The parameters to be measured at intermediate points during endurance tests are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.3 <u>Electrical Measurements on Completion of Endurance Tests</u>

The parameters to be measured on completion of endurance testing are as scheduled in Table 6 of this specification. Unless otherwise stated, the measurements shall be performed at $T_{amb} = +22 \pm 3$ °C.

4.8.4 Conditions for Operating Life Tests

The requirements for operating life testing are specified in Section 9 of ESA/SCC Generic Specification No. 9000. The conditions for operating life testing shall be as specified in Table 5(c) of this specification.

4.8.5 Electrical Circuits for Operating Life Tests

Circuits for use in performing the operating life tests are shown in Figure 5(c) of this specification.

4.8.6 Conditions for High Temperature Storage Test

The requirements for the high temperature storage test are specified in ESA/SCC Generic Specification No. 9000. The temperature to be applied shall be the maximum storage temperature specified in Table 1(b) of this specification.

4.9 TOTAL DOSE IRRADIATION TESTING

4.9.1 Application

If specified in Para. 4.2.1 of this specification, total dose irradiation testing shall be performed in accordance with the requirements of ESA/SCC Basic Specification No. 22900.

4.9.2 Bias Conditions

Continuous bias shall be applied during irradiation testing as shown in Figure 6 of this specification.

4.9.3 <u>Electrical Measurements</u>

The parameters to be measured prior to irradiation exposure are scheduled in Table 2 of this specification. Only devices which meet the requirements of Table 2 shall be included in the test sample.

The parameters to be measured during and on completion of irradiation testing are scheduled in Table 7 of this specification.

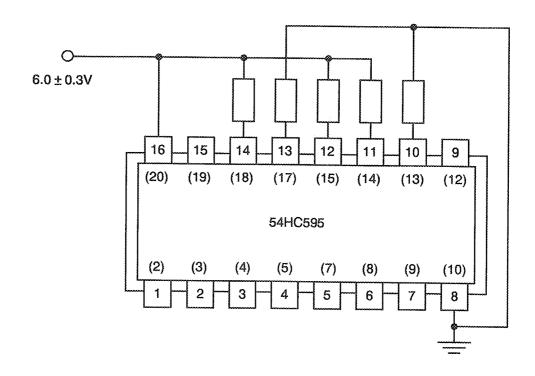
PAGE 43

ISSUE 2

TABLE 6 - ELECTRICAL MEASUREMENTS ON COMPLETION OF ENVIRONMENTAL TESTS AND AT INTERMEDIATE POINTS AND ON COMPLETION OF ENDURANCE TESTING

*	I	T		·	Υ		~~~
CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	CHANGE LIMITS	ABSO	DLUTE	- UNIT
		TEST METHOD	CONDITIONS	(Δ) (NOTE 1)	MIN	MAX	
Functional Test 1	~	As per Table 2	As per Table 2	q	*	-	_
Functional Test 2	-	As per Table 2	As per Table 2	u a	~	-	-
Functional Test 3	-	As per Table 2	As per Table 2		~	~	_
Quiescent Current	l _{DD}	As per Table 2	As per Table 2	±0.12	de de la companya de	0.4	μA
Input Current Low Level	l _{IL}	As per Table 2	As per Table 2	± 20	•	-50	nA
Input Current High Level	IH	As per Table 2	As per Table 2	±20	N	50	nA
Output Voltage Low Level 4	V _{OL4}	As per Table 2	As per Table 2	±0.026	*	0.26	V
Output Voltage Low Level 5	V _{OL5}	As per Table 2	As per Table 2	±0.026	*	0.26	٧
Output Voltage High Level 4	V _{OH4}	As per Table 2	As per Table 2	± 0.2	3.98	-	V
Output Voltage High Level 5	V _{OH5}	As per Table 2	As per Table 2	± 0.2	5.48	-	٧
Threshold Voltage N-Channel	V _{THN}	As per Table 2	As per Table 2	± 0.3	-0.45	- 1.45	V
Threshold Voltage P-Channel	V _{THP}	As per Table 2	As per Table 2	± 0.3	0.45	1.35	v
Output Leakage Current Third State (Low Level Applied)	lozl	As per Table 2	As per Table 2	± 0.2	~	- 0.5	μΑ
Output Leakage Current Third State (High Level Applied)	lozh	As per Table 2	As per Table 2	± 0.2		0.5	μΑ
	Functional Test 1 Functional Test 2 Functional Test 3 Quiescent Current Input Current Low Level Input Current High Level Output Voltage Low Level 4 Output Voltage High Level 4 Output Voltage High Level 5 Threshold Voltage High Level 5 Threshold Voltage P-Channel Output Leakage Current Third State (Low Level Applied) Output Leakage Current Third State	Functional Test 1 - Functional Test 2 - Functional Test 3 - Quiescent Current IDD Input Current Low Level IIH Output Voltage Low Level 4 Vol4 Output Voltage High Level 4 Voh4 Output Voltage High Level 5 Voh5 Threshold Voltage High Level 5 Voh5 Threshold Voltage P-Channel Vohannel Voltage P-Channel Output Leakage Current Third State (Low Level Applied) Output Leakage Current Third State (Low Level Applied)	Functional Test 1 Functional Test 2 Functional Test 2 Functional Test 3 Guiescent Current Input Current Low Level Input Current High Level Output Voltage Low Level 4 Output Voltage High Level 4 Output Voltage High Level 4 Cutput Voltage High Level 5 Threshold Voltage High Level 5 Threshold Voltage N-Channel Threshold Voltage P-Channel Output Leakage Current Third State (Low Level Applied) I As per Table 2 To As per Table 2 As per Table 2 As per Table 2 Threshold Voltage Voh As per Table 2 Voh As per Table 2 As per Table 2 Threshold Voltage N-Channel Output Leakage Current Third State (Low Level Applied) Output Leakage Current Third State	Functional Test 1 - As per Table 2 Functional Test 2 - As per Table 2 Functional Test 3 - As per Table 2 As per Table 2 As per Table 2 Functional Test 3 - As per Table 2 As per Table 2 Guiescent Current IDD As per Table 2 Input Current Low Level Input Current High Level Utput Voltage Low Level 4 Vol4 As per Table 2	CHARACTERISTICS SYMBOL SPEC. AND/OR TEST (A) (NOTE 1) Functional Test 1 - As per Table 2 As per Table 2 - Functional Test 2 - As per Table 2 As per Table 2 - Functional Test 3 - As per Table 2 As per Table 2 - Functional Test 3 - As per Table 2 As per Table 2 - Guiescent Current Ipp As per Table 2 As per Table 2 ±0.12 Input Current Low Level Ipp As per Table 2 As per Table 2 ±0.12 Input Current High Level As per Table 2 As per Table 2 ±0.026 Output Voltage Low Level 4 As per Table 2 As per Table 2 ±0.026 Output Voltage High Level 4 As per Table 2 As per Table 2 ±0.026 Output Voltage High Level 4 As per Table 2 As per Table 2 ±0.2 Output Voltage High Level 5 As per Table 2 As per Table 2 ±0.2 Threshold Voltage Nohl As per Table 2 As per Table 2 ±0.3 Threshold Voltage Nohl As per Table 2 As per Table 2 ±0.3 Threshold Voltage Nohl As per Table 2 As per Table 2 ±0.3 Threshold Voltage Nohl As per Table 2 As per Table 2 ±0.3 Threshold Voltage Nohl As per Table 2 As per Table 2 ±0.3 Threshold Voltage Nohl As per Table 2 As per Table 2 ±0.3 Threshold Voltage Nohl As per Table 2 As per Table 2 ±0.3 Output Leakage Current Third State (Low Level Applied) Output Leakage Current Third State (Low Level Applied) Output Leakage Current Third State (Low Level Applied)	CHARACTERISTICS SYMBOL TEST METHOD SPEC. AND/OR TEST METHOD CONDITIONS TEST (Δ) (Δ) (NOTE 1) MIN Functional Test 1 - As per Table 2 As per Table 2 - - Functional Test 2 - As per Table 2 As per Table 2 - - Functional Test 3 - As per Table 2 As per Table 2 - - Quiescent Current Low Level Input Current Low Level Input Current Low Level As per Table 2 As per Table 2 ± 20 - Input Current High Level Input Current High Level As per Table 2 As per Table 2 ± 20 - Output Voltage Low Level 4 VOL4 As per Table 2 As per Table 2 ± 0.026 - Output Voltage Low Level 5 VOL5 As per Table 2 As per Table 2 ± 0.026 - Output Voltage High Level 4 VOH4 As per Table 2 As per Table 2 ± 0.2 5.48 Output Voltage High Level 5 VOH5 As per Table 2 As per Table 2 ± 0.3 -0.45 Threshold Voltage P-Channel VTHP	CHARACTERISTICS SYMBOL SPEC. AND/OR TEST METHOD TEST CONDITIONS (Δ) (NOTE 1) IMIM MAX Functional Test 1 - As per Table 2 As per Table 2 - - - - Functional Test 2 - As per Table 2 As per Table 2 -

<u>NOTES</u>


The change limits (Δ) are applicable to the Operating Life test only. The change in parameters between
initial and end point measurements shall not exceed the limits given. In addition, the absolute limits shall
not be exceeded.

PAGE 44

ISSUE 2

FIGURE 6 - BIAS CONDITIONS FOR IRRADIATION TESTING

NOTES

- 1. Pin numbers in parenthesis are for the chip carrier package.
- 2. Input Protection Resistor = 680Ω min. to $47k\Omega$ max.

TABLE 7 - ELECTRICAL MEASUREMENT DURING AND ON COMPLETION OF IRRADIATION TESTING

NO.	CHARACTERISTICS	SYMBOL	SPEC. AND/OR	TEST	CHANGE LIMITS	ABSOLUTE		1 10 1177
0.0000000000000000000000000000000000000		0 ,	TEST METHOD	CONDITIONS	(Δ)	MIN	MAX	UNIT
4 to 5	Quiescent Current	I _{DD}	As per Table 2	As per Table 2	-	n#	40	μА
106	Threshold Voltage N-Channel	V _{THN}	As per Table 2	As per Table 2	±0.6	-0.4	-1.5	V
107	Threshold Voltage P-Channel	V_{THP}	As per Table 2	As per Table 2	±0.6	0.4	1.4	٧

PAGE 45

ISSUE 2

APPENDIX 'A'

Page 1 of 1

AGREED DEVIATIONS FOR TEXAS INSTRUMENTS (F)

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS
Para. 4.2.3	Para. 9.9.2, "Electrical Measurements at High and Low Temperatures": Only a test result summary, based on go-no-go tests and presented in histogram form is required.

PAGE 46

ISSUE 2

APPENDIX 'B'

Page 1 of 1

AGREED DEVIATIONS FOR SGS-THOMSONSTMICROELECTRONICS (F)

ITEMS AFFECTED	DESCRIPTION OF DEVIATIONS					
Para. 4.2.3	Para. 7.1.1(b): Power Burn-in test is performed using STMicroelectronics Specification Ref.: 0019255. Para. 9.23, High temperature Reverse Bias Burn-in: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used. Para. 9.24, Power Burn-in: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.					
Para. 4.2.4	Para. 9.21.1, Operating Life During Qualification Testing: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.					
Para. 4.2.5	Para. 9.21.2, Operating Life During Lot Acceptance: Testing: The temperature limits of MIL-STD-883, Para. 4.5.8(c) may be used.					