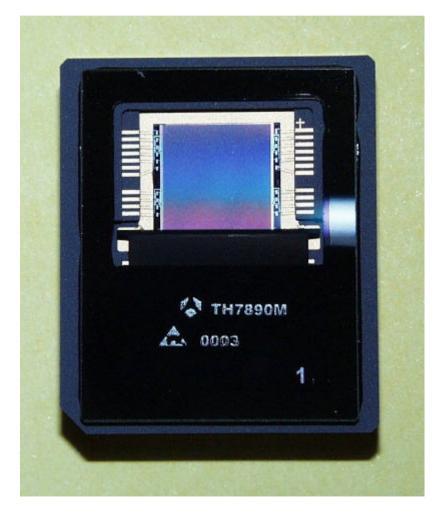


TH7980M ESA Evaluation Test Plan

TH7890M Evaluation test plan (2001)

ESA / ESTEC CNES ATMEL Grenoble

Introduction


- The goal was to evaluate a new CCD device
 - Performances
 - Reliability
 - Irradiation tolerance
 - Production flow
- This presentation summarizes the work that has been performed in 2001 in the frame of the evaluation test plan

TH7980M ESA Evaluation Test Plan

Table of content

- Device presentation
- Audits / documentation
- Evaluation plan presentation
- Construction analysis
- Operating Area
- ESD
- Irradiation plans
- Operating life tests and storage life tests
- Environmental tests

Device Presentation

- Frame transfer CCD for star tracker applications
- 512 x 512 pixels image zone
- 17 x 17 µm² pixel
- 100 % Aperture
- MPP mode operation
- 4 phases clocking for image zone and memory zone
- 2 phases clocking for output register
- Sapphire window with anti reflective coating

- Spectral range : 400 900 nm (AR)
- Saturation voltage : 900 mV
- Dark signal : < 25 pA/cm² at room temperature
- Temporal noise : 220 µV rms
- Transfer inefficiency : 1x10⁻⁵ per stage (horizontal & vertical transfer)
- Responsivity (BG38) : > 10 V/µJ/cm²
- Output amplifier consumption : 2.9 mA

Audits / Documentation

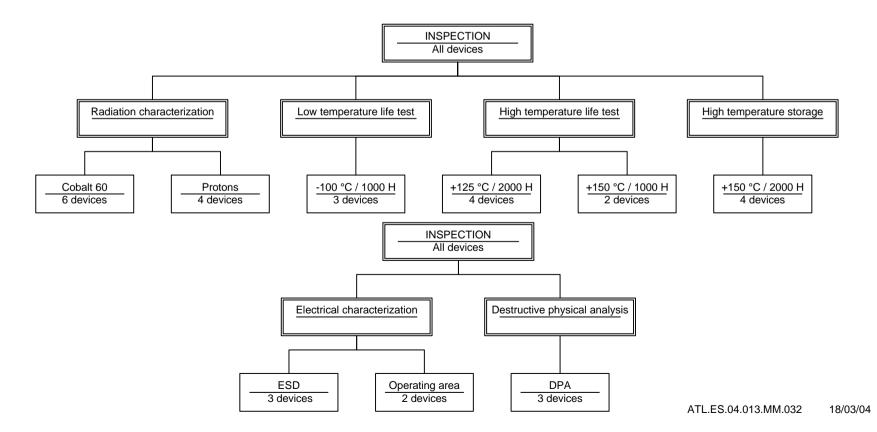
- During ETP, device PID has been successfully reviewed by CNES
- Production flow has been successfully audited by ESA & CNES. Comments were taken into account and correctives actions were implemented
- ESA / ESTEC has edited the TH7890M detail specification

Evaluation Test Plan presentation

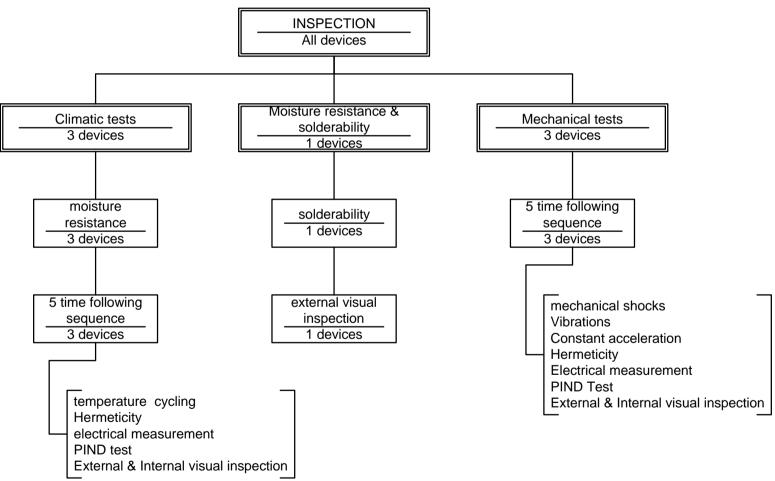
- This plan consists of :
 - > a device characterization :

Construction analysis operating area irradiation tests (total dose & displacement damages)

a device reliability evaluation : operating life tests and storage life tests Environmental tests


Construction analysis (ESTEC)

- Construction analysis has been carried out by ESTEC
 - > Device meets the general ESA/SCC construction analysis requirements
 - Waiver on one glue which has high outgassing values is accepted by ESA/ESTEC


Evaluation plan presentation (1/2)

- more than 270 elementary tests
- more than 100 electrical and electro-optical measurement steps

Evaluation plan presentation (2/2)

Operating area conclusions

- Nominal values used for biasing and supplying the device have large margins to prevent drivers drifts
- Bias voltages are optimized to improve radiation tolerance

ESD

- Non protected inputs (MPP mode)
- Results obtained in ESD tests correlate previous data obtained on same technology devices
- 2 ESD damages during the 270 handling steps
- Stress level during ESD tests : no failure up to 200 V

Cobalt 60 irradiation

- Total dose applied up to 80 krad (Si)
- Source : Cobalt 60 420 rad/h
- Results :
 - > Dark signal at 80 krad equivalent to dark signal at 3 krad for a TH7863D
 - > No significant Responsivity evolution after irradiation
 - > No significant Transfer efficiency evolution after irradiation
- Main impact of irradiation is threshold voltage drift

Proton irradiation

- Applied irradiation dose : 10 MeV & 50 MeV
- Applied fluence : 3x10⁹ p/cm² & 3x10¹⁰ p/cm²
- Results :
 - Average dark signal and DSNU increase due to displacement effect
 - > No significant other characteristics evolution after irradiation
- Main impact of proton irradiation is DSNU and average dark signal increase

Operating life tests and storage life tests

- 2000 H/125 °C operating life tests
- 1000 H/150 °C operating life tests
- 1000 H/-100 °C operating life tests
- 1000 H/150 °C storage tests
- Devices passed successfully these different tests without significant drift

Environmental tests

- Moisture resistance / solderability
- Climatic tests
- Mechanical tests
- Devices passed successfully these different tests without significant drift

Conclusion

- Devices succeeded to the different tests of the ETP
- These results shows that there is a good margin between stress levels (electrical & environmental) and screening levels
- All these results show that TH7890M device is a good candidate for space applications with improved radiation behavior, high reliability and high performances