

document title/ titre du document

RESULTS ON ⁶⁰CO TID TEST OF PART TYPE: PWM CONTROLLER 80900832

CONTRACT: 20775/NL/PA/07

prepared by/préparé par

M.Muschitiello TEQ-QEC

reference/réference ESA_QCA0811T_I issue/édition 1 revision/révision 2 date of issue/date d'édition 8th May 2009 status/état Document type/type de document Radiation Test Report Distribution/distribution

European Space Agency Agence spatiale européenne

> ESTEC Keplerlaan 1 - 2201 AZ Noordwijk - The Netherlands Tel. (31) 71 5656565 - Fax (31) 71 5656040

page 2 of 40

APPROVAL

author auteur	Michele Muschitiello) TEC-QEC	Ulde Chell	date date 8 th May 2009
			10	
approved by approuvé by	Nat Carthew Fredrik Sturesson Ali Zadeh	TEC-QEC TEC-QEC TEC-QEC	Endille Ali Zalih	8 th May 2009

CHANGE LOG

reason for change /raison du changement	issue/issue	revision/revision	date/ <i>date</i>
New document	1	1	17 th February 2009

CHANGE RECORD

Issue: 1 Revision: 2

reason for change/raison du changement	page(s)/page(s)	paragraph(s)/paragraph(s)
Clarify that later revisions of Applicable documents includes update of TID drift limits of specific parameters		1 and 5
Clarify discrepancy in measurement of 5V reference voltage parameter		4.1 and 4.4

ESA_QCA0811T_I issue 1 revision 2 -

page 3 of 40

TABLE OF CONTENTS

1	INT	RODUCTION	5
2	APF	PLICABLE DOCUMENTS	5
	2.1	Reference Documents	5
3	TES	ST DESCRIPTION	6
4	RAD	DIATION TEST PLAN	7
	4.1	Measurement set-up	8
	4.2	Thermal conditions	11
	4.3	Dosimetry	11
	4.4	Test Results	12
5	COI	NCLUSION	
6	APF	PENDIX A MEASUREMENTS FROM ETCA	40
		-	-

ESA_QCA0811T_I issue 1 revision 2 -

page 4 of 40

Test Report Number	ESA QCA0811T I
Project	FCI
SCC Component no	n/a
Component Designation	PWM Controller
Irradiation Spec. no	ESA/SCC 22900
Family	Hybrid
Group	Silicon
Package	84 pins COEP – Metal Lid
Component Specification	Thales Alenia Space ETCA - 8090.832-1 detail specification, issue
Test House Name	ESA / ESTEC
Irradiation Test Plan Number	ESA QCA0811T I
Manufacturer name	Thales Alenia Space ETCA
Application type of Acceptance	n/a
Serial Number of samples	#11 #03 #05 #10 #13
Manufacturing Date Code	0731
Irradiation Measurement schedule:	0, 10, 15, 20, 25, 30, 40, 45, 50, krad(Si) Total Dose
Biased:	Yes, devices #03, #05, #13
Unbiased:	Yes, device #10
Circuit Reference:	Fig.1 (paragraph 4.8 of detail specification)
Supply Voltage:	30 V
Temp ^o C:	Room temperature 20 ± 3
Duration:	About 1300 hours
Electrical Measurement	(1.1 and 1.4) Primary Consumption, (1.5) Consumption on 5V_DIG, (1.6) Secondary
Parameters	Consumption, (2.1) Vaux Supply voltage, (3.1) 2.5V output voltage, (4.1) 5V reference voltage, (5.1) UVP Threshold Voltage, (5.2) UVP Hysteresis, (6.1) OVP
	Threshold Voltage, (9.1) Clock Frequency.
	(Reference to parameter nr. in table 2 of ETCA 8090.0832-1 detail specification)
Facility	ESA/ESTEC
Source:	^{oo} Co (gamma)
Energy:	1.173 MeV 1.332 MeV
Dose Rate:	0.65 Rad(Si)/min
Absorbing Material:	
Temperature °C:	20 ± 3
Dosimetry / Calibration method.	A calibrated INE2571, 0.6cc air ionisation chamber read by a
	Calibrated Farmer 26/0 dosimeter.
Anneal Test Biggod	Yes – performed at ETCA facility
DibidSeu Bias Circuit Deference	 Fig 1 (paragraph 4.8 of datail aposition)
Supply Voltage	1 19. 1 (parayraph 4.0 01 uetail specification) 30 V
Duration	24 hrs at room temperature followed by 168 hrs at 100 °C
Facility Source: Energy: Dose Rate: Absorbing Material: Thickness: Temperature °C: Dosimetry / Calibration method. Anneal Test Biased Unbiased Bias Circuit Reference Supply Voltage Duration	Threshold Voltage, (9.1) Clock Frequency. (Reference to parameter nr. in table 2 of ETCA 8090.0832-1 detail specification) ESA/ESTEC ⁶⁰ Co (gamma) 1.173 MeV 1.332 MeV 0.65 Rad(Si)/min N/A N/A 20 ± 3 A calibrated NE2571, 0.6cc air ionisation chamber read by a calibrated Farmer 2670 dosimeter. Yes – performed at ETCA facility Yes 24 hrs at room temperature followed by 168 hrs at 100 °C == Fig.1 (paragraph 4.8 of detail specification) 30 V 24 hrs at room temperature followed by 168 hrs at 100 °C

1 INTRODUCTION

The following document contains the TID Radiation Test results for the 8090.0832-1G02 PWM Controller, manufactured by Thales Alenia Space ETCA.

<u>Note that the radiation test results in this report are compared to parameters specified in the revisions of Detail specification and the User Manual document mentioned under Applicable Documents. Both these documents have later been replaced by new issues with updated TID drift limits on specific parameters (8090.0832 issue 2.5, 23.03.2009 and PWM-PSU-ETCA-UM-0027 issue 1.8, 14.11.2008)</u>

2 APPLICABLE DOCUMENTS

- AD1- ESA/SCC 22900 "Total Dose Steady-State Irradiation Test Method", issue 3.
- ThalesAleniaSpace ECTA Detail Specification 8090.0832 issue 2.2 04.03.2008.
- ThalesAleniaSpace ETCA User Manual PWM-PSU-ETCA-UM-0027 issue 1.4, paragraph 2.4

2.1 Reference Documents

- ThalesAleniaSpace ECTA PWM controller, TP2 Transient investigation Procedure PWM-PSU-TP-0033
- ThalesAleniaSpace ETCA Post-irradiation test report PWM-PSU-TR-0064

3 TEST DESCRIPTION

Five devices PWM Controllers 8090.0832-G02 and one Burn-in Board, to accommodate three biased device during irradiation, have been received from THALES Alenia Space ETCA, for TID irradiation testing at the ESTEC ⁶⁰Co facility. All irradiation tests were performed at a dose rate of 0.65 rad(Si)/min on average. Bias condition used was as in paragraph 4.8.2. of detail spec.

The serial numbers of received parts are 011, 03, 05, 10 and 13. Table 1 summarizes their use.

Table 1 received samples

S/n	
11	Reference device (not irradiated) - Electrically tested before and after each intermediate measurement run at irradiation step completion
03	Biased during ⁶⁰ Co irradiation
05	Biased during ⁶⁰ Co irradiation
10	Un-Biased during 60Co irradiation - EM device from RGA (not hermetic)
13	Biased during ⁶⁰ Co irradiation

4 RADIATION TEST PLAN

The radiation test plan is reported in table 2.

Т	able 2		
	Irradiation Step	Total Dose krad (Si)	Dose Rate (Si)Rad/min
	(Pre irradiation) 0	0	0
	1	9	0.65
	2	12.5	0.65
	3	19.1	0.65
	4	25.7	0.65
	5	31.4	0.60
	6	38.0	0.65
	7	45.0	0.65
	8	49.5	0.65

During the irradiation test, voltages between the ground and test points: Alim (A, B and C) and VPWM (A, B and C) of the burn-in board accommodating the biased devices, were recorded. At the completion of each irradiation step, intermediate electrical measurements were carried out according to the next paragraph. Fig.1 shows the schematic of each Burn-in Board position.

At the end of the final irradiation run, all devices were sent to ETCA for complete electrical characterization followed by the annealing at room temperature (24 hours) and at 100°C (168 hrs).

After the high temperature annealing, devices were tested comprehensively by ETCA (all electrical parameters according to detailed specification, see Appendix E) and returned to ESA-ESTEC for final measurements.

At ESTEC all parts were re-tested with the same set-up used during irradiation runs. The final ESA measurements were performed to correlate ESA / ETCA measurements.

Cesa

ESA_QCA0811T_I issue 1 revision 2 page 8 of 40

Fig.1 Burn-in Board schematic diagram (paragraph 4.8. of det.spec.)

4.1 Measurement set-up

No in-situ measurements were performed during irradiation.

To save time and resources, electrical measurements at ESTEC were carried out using a SEE test board developed by ETCA (see Fig.2). The SEE board was not intended to perform measurements of all parameters required. Thus, the SEE board was modified, in agreement with ETCA, enabling measurement of the required parameters, according to table 2 of detail specification 80900832 issue 2.2 04.03.2008.

ESA_QCA0811T_I issue 1 revision 2 page 9 of 40

Fig.2 Schematic of SEE Test Board used during ⁶⁰Co TID for the initial and the intermediate electrical measurements at Irradiation Test Facility.

A specific power-up sequence was required prior to initiation of each measurement. Fig.3, illustrates the initial power-up sequence and the power conditions applied for the various measurements. Each point in the graph represents a measurement point in the step sequence as listed in table 3a.

Fig.3 PWM power-up sequence during electrical measurements.

In figure 3, note that traced Vin_FILT is the actual value read directly on pin nr.45. This last value differs from the output voltage of power supply (Vin_Filt_PWR_set) due to the presence on the test board of an 800 Ohm resistor.

The measured parameters and the pass/fail criteria are listed in tables 3a and 3b. Table 3a lists pass/fail criteria obtained from detailed specification while table 3b lists pass/fail criteria based on Worst Case Analysis (WCA) values provided by ETCA in the WCA summary given in the User Manual (refer to PWM-PSU-ETCA-UM-0027, **issue 1.4**, paragraph 2.4). Both pass/fail criteria have been quoted and included in the results however, primarily pass/fail criteria based on the WCA were considered definitive.

N° (*)	Parameter	Note (measured at fig.3 points)	Min.	Max.	Unit	
1.1	Primary Consumption	(8-13)	3.8	7	mA	
1.4	Primary Consumption	(6-7)	220	290	uA	
1.5	Consumption on 5V_DIG	Estimated value, (7-13, 15)	3.8	7	mA	
1.6	Secondary Consumption	(7-13, 15-16)	5	9.5	mA	
2.1	Vaux Supply voltage	(8-13)	9.3	10.24	V	
3.1	2.5V output voltage	(7-13, 15-16)	2.493	2.507	V	
4.1	5V reference voltage	(7-13, 15-16)	4.9	5.01	V	
5.1	UVP Threshold Voltage	(16)	17.53	17.87	V	
5.2	UVP Hysteresis	(16)	1.15	1.39	V	
6.1	OVP Threshold Voltage	(16)	13.37	14	V	
9.1	Clock Frequency	(16)	193'500	199'400	Hz	
11.1	TP2 voltage	(15-16)	0	6	mV	

Table 3.a Measured Parameters and Initial Min-Max Limits

(*) reference to parameter nr. in table 2 of ETCA 8090.0832-1 detail specification.

Pre-irradiation measurements performed at ESTEC of OVP Over-Voltage Protection (see table 13) resulted in values lower than the minimum limit stated in ETCA 8090.0832-1 detail specification, table 2. While pre-irradiation measurements performed at ETCA of the same parameter were within the specification. The reason of this discrepancy is not understood.

Table 3.b Min-Max Limits after Irradiation (**)

N° (*)	Parameter	Note (measurement points)	Min.	Max.	Unit
2.1	Vaux Supply voltage	(8-13)	8.57	10.80	V
3.1	2.5V output voltage	(7-13, 15-16)	2.486	2.514	V
4.1	5V reference voltage	(7-13, 15-16)	4.972	5.028	V
5.1	UVP Threshold Voltage	(16)	17.28	10.07	V
5.2	UVP Hysteresis	(16)	1.040	1.550	V
6.1	OVP Threshold Voltage	(16)	12.64	14.61	V
9.1	Clock Frequency	(16)	192'000	201'000	Hz

(*) reference to parameter nr. in table 2 of ETCA 8090.0832-1 detail specification.

(**) Worst Case Analysis limits as in paragraph 2.4 of ETCA PWM-PSU-ETCA-UM-0027 issue 1.4.

Note that for the parameter (4.1) 5V Reference Voltage, the initial and post irradiation limits (from detail specification and worst case analysis) are not consistent. The value for post irradiation limits in the worst case analysis is given with zero load while the detail specification parameter (4.1) is given with 2mA load.

4.2 Thermal conditions

All irradiations and measurements were performed at room temperature (20 \pm 3 °C).

4.3 Dosimetry

A calibrated NE2571, 0.6cc air ionisation chamber read by a calibrated Farmer 2670 dosimeter was used to measure the Total Ionising Dose.

4.4 Test Results

Intermediate measurement results are reported in tables 4 to 15. The applied Total Dose is 49.51 krad(Si). At the end of the 49.51 krad step, electrical measurements were performed and the five samples shipped to ETCA for annealing and the full final electrical characterization.

The five devices were received by ETCA after five hours from the end of irradiation, and immediately tested with their proprietary automatic test setup (refer to ETCA nr.80900832 detail specification).

Devices were tested again the following day at 07:00 and at 16:00. During annealing the four irradiated devices were biased employing the burn-in test boards available at ETCA. The samples went through accelerated ageing for 168 hrs at 100°C, under bias conditions.

Following the accelerated ageing tests, full parametric measurements were performed and device returned to ESA. ETCA Results are reported in ETCA document "Post-Irradiation test report", ref. PWM-PSU-TR-0064.

When received at ESA-ESTEC, parts were re-tested by using the set-up for the intermediate measurements. Those last measurements have been appended in tables 4 to 15; the measurement data have also been plotted on the relevant graphs.

Electrical Measurement uncertainty values, reported in table 4-15 footnotes, were estimated by observing the variations in the reference device (s/n 11) parameters, during the entire test campaign. Uncertainty has been calculated by using [1] below, with a coverage factor of 3.

[1] $u = \frac{s}{\sqrt{n}}$, u = estimated overall uncertainty<math>s = standard deviationn = number of observations

All data from tables have been plotted from figures 4 to 15.

ESA_QCA0811T_I issue 1 revision 2 page 13 of 40

Table 4 – 1.1 Primary Consumption [A] vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement data [A]

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.0057952	0.0057434	0.0057765	0.0057137	0.0058285
9.0	0.0057881	0.0057137	0.0057564	0.0057046	0.0058003
12.5	0.0057947	0.0057042	0.0057425	0.0057035	0.0057864
19.1	0.0057938	0.0056662	0.0057117	0.0056992	0.0057495
25.7	0.0057959	0.0056290	0.0056788	0.0056995	0.0057151
31.4	0.0057926	0.0055982	0.0056520	0.0056904	0.0056859
38.1	0.0057978	0.0055680	0.0056227	0.0056674	0.0056547
45.0	0.0057966	0.0055413	0.0055953	0.0056433	0.0056244
49.5	0.0057928	0.0055184	0.0055746	0.0056209	0.0056013
		After An	nealing		
=	0.0057946	0.0054672	0.0055217	0.0055416	0.0055432

Mean value (s/n 11): 5.7942 mA Estimated uncertainty: ± 0,044% (± 2.6 μA)

b) Drift Values from Initial Measurements [A]

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
9.0	-0.0000071	-0.0000297	-0.0000201	-0.0000091	-0.0000282
12.5	-0.0000005	-0.0000392	-0.0000339	-0.0000101	-0.0000421
19.1	-0.0000014	-0.0000773	-0.0000648	-0.0000145	-0.0000791
25.7	0.0000007	-0.0001144	-0.0000977	-0.0000142	-0.0001134
31.4	-0.0000026	-0.0001452	-0.0001245	-0.0000233	-0.0001426
38.1	0.0000026	-0.0001754	-0.0001537	-0.0000462	-0.0001738
45.0	0.0000014	-0.0002021	-0.0001812	-0.0000704	-0.0002041
49.5	-0.0000024	-0.0002250	-0.0002019	-0.0000927	-0.0002273
		After An	nealing		
=	-0.0000006	-0.0002762	-0.0002548	-0.0001721	-0.0002853

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000%	0.000%	0.000%	0.000%	0.000%
9.0	-0.122%	-0.517%	-0.348%	-0.159%	-0.484%
12.5	-0.009%	-0.682%	-0.588%	-0.177%	-0.722%
19.1	-0.024%	-1.345%	-1.121%	-0.254%	-1.357%
25.7	0.012%	-1.993%	-1.692%	-0.248%	-1.946%
31.4	-0.045%	-2.527%	-2.154%	-0.407%	-2.447%
38.1	0.045%	-3.053%	-2.661%	-0.809%	-2.982%
45.0	0.024%	-3.518%	-3.137%	-1.232%	-3.502%
49.5	-0.042%	-3.917%	-3.495%	-1.623%	-3.899%
		After Ann	ealing		
=	-0.010%	-4.809%	-4.411%	-3.012%	-4.895%

Applicable limits:	Min.	Max.	Unit
Det.Spec.	0.0038	0.0070	[A]

ESA_QCA0811T_I issue 1 revision 2 page 14 of 40

Fig. 4 Primary Consumption vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

ESA_QCA0811T_I issue 1 revision 2 page 15 of 40

Mean value (s/n 11): 239.09 µA

Estimated uncertainty: ± 0,47% (± 1.1 µA)

Table 5 – 1.4 Primary Consumption [A] vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement data [A]

s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0002381	0.0002347	0.0002368	0.0002396	0.0002388		
0.0002382	0.0002377	0.0002396	0.0002374	0.0002402		
0.0002408	0.0002396	0.0002421	0.0002381	0.0002417		
0.0002375	0.0002376	0.0002399	0.0002377	0.0002401		
0.0002407	0.0002409	0.0002433	0.0002374	0.0002404		
0.0002384	0.0002402	0.0002423	0.0002389	0.0002409		
0.0002401	0.0002414	0.0002415	0.0002394	0.0002425		
0.0002391	0.0002398	0.0002424	0.0002400	0.0002409		
0.0002399	0.0002420	0.0002427	0.0002388	0.0002410		
After Annealing						
0.0002382	0.0002396	0.0002446	0.0002424	0.0002400		
	s/n 11 0.0002381 0.0002382 0.0002408 0.0002375 0.0002407 0.0002384 0.0002391 0.0002399	s/n 11 s/n 3 0.0002381 0.0002347 0.0002382 0.0002377 0.0002375 0.0002376 0.0002375 0.0002376 0.0002375 0.0002409 0.0002384 0.0002409 0.0002384 0.0002402 0.0002391 0.0002398 0.0002399 0.0002402 0.0002399 0.0002398 0.0002382 0.0002398 0.0002384 0.0002398 0.0002399 0.0002400 <td>s/n 11s/n 3s/n 50.00023810.00023470.00023680.00023820.00023770.00023960.00024080.00023960.00024010.00023750.00023760.00023990.00024070.00024090.00024030.00023840.00024020.00024030.00023910.00024140.00024150.00023910.00023980.00024240.00023920.00024200.0002427After Anmealing0.00023820.00023960.0002446</td> <td>s/n 11s/n 3s/n 5s/n 100.00023810.00023470.00023680.00023960.00023820.00023770.00023960.00023740.00024080.00023960.00024210.00023810.00023750.00023760.00023990.00023770.00024070.00024090.00024330.00023740.00023840.00024020.00024230.00023890.00024010.00024140.00024150.00023940.00023910.00023980.00024270.00023880.00023990.00024200.00024270.00023880.00023990.00024200.00024270.0002388After Anmealing0.00023820.00023960.00024460.00023820.00023960.0002446</td>	s/n 11s/n 3s/n 50.00023810.00023470.00023680.00023820.00023770.00023960.00024080.00023960.00024010.00023750.00023760.00023990.00024070.00024090.00024030.00023840.00024020.00024030.00023910.00024140.00024150.00023910.00023980.00024240.00023920.00024200.0002427After Anmealing0.00023820.00023960.0002446	s/n 11s/n 3s/n 5s/n 100.00023810.00023470.00023680.00023960.00023820.00023770.00023960.00023740.00024080.00023960.00024210.00023810.00023750.00023760.00023990.00023770.00024070.00024090.00024330.00023740.00023840.00024020.00024230.00023890.00024010.00024140.00024150.00023940.00023910.00023980.00024270.00023880.00023990.00024200.00024270.00023880.00023990.00024200.00024270.0002388After Anmealing0.00023820.00023960.00024460.00023820.00023960.0002446		

b) Drift Values from Initial Measurements [A]

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
9.0	5.50E-08	2.98E-06	2.87E-06	-2.23E-06	1.38E-06
12.5	2.66E-06	4.95E-06	5.37E-06	-1.55E-06	2.87E-06
19.1	-5.85E-07	2.93E-06	3.14E-06	-1.97E-06	1.22E-06
25.7	2.61E-06	6.17E-06	6.48E-06	-2.24E-06	1.59E-06
31.4	3.20E-07	5.48E-06	5.53E-06	-7.50E-07	2.07E-06
38.1	2.02E-06	6.70E-06	4.73E-06	-2.15E-07	3.67E-06
45.0	9.60E-07	5.11E-06	5.58E-06	3.70E-07	2.02E-06
49.5	1.76E-06	7.34E-06	5.90E-06	-8.00E-07	2.18E-06
		After Ann	nealing		
=	1.05E-07	4.95E-06	7.86E-06	2.76E-06	1.16E-06

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000%	0.000%	0.000%	0.000%	0.000%
9.0	0.023%	1.270%	1.212%	-0.933%	0.578%
12.5	1.115%	2.109%	2.266%	-0.645%	1.202%
19.1	-0.246%	1.248%	1.324%	-0.822%	0.513%
25.7	1.094%	2.629%	2.737%	-0.933%	0.668%
31.4	0.134%	2.333%	2.333%	-0.313%	0.867%
38.1	0.848%	2.855%	1.996%	-0.090%	1.534%
45.0	0.403%	2.177%	2.357%	0.154%	0.846%
49.5	0.737%	3.127%	2.492%	-0.334%	0.913%
		After Anne	ealing		
=	0.044%	2.107%	3.320%	1.152%	0.488%

Applicable limits:	Min.	Max.	Unit
Det.Spec.	0.000220	0.000290	[A]

ESA_QCA0811T_I issue 1 revision 2 page 16 of 40

Fig. 5 Primary Consumption vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

ESA_QCA0811T_I issue 1 revision 2 page 17 of 40

Table 6 – Consumption on 5V_DIG (estimated) vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement data [A]

Total Dose							
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0	0.005159	0.005076	0.005006	0.005037	0.005056		
9.0	0.005268	0.005292	0.005412	0.005450	0.005458		
12.5	0.005453	0.005382	0.005431	0.005394	0.005436		
19.1	0.005438	0.005314	0.005342	0.005385	0.005349		
25.7	0.005620	0.005581	0.005585	0.005594	0.005611		
31.4	0.005409	0.005328	0.005379	0.005430	0.005380		
38.1	0.005338	0.005364	0.005401	0.005427	0.005426		
45.0	0.005692	0.005646	0.005604	0.005620	0.005588		
49.5	0.005654	0.005600	0.005593	0.005616	0.005585		
After Annealing							
=	0.005654	0.005607	0.005637	0.005633	0.005630		

Mean value (s/n 11): 5.469 mA Estimated uncertainty: ± 3,16% (± 173 $\,\mu\text{A})$

b) Drift Values from Initial Measurements [A]

- - - -

Total Dose							
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0	0.000000	0.000000	0.000000	0.000000	0.000000		
9.0	0.000109	0.000215	0.000406	0.000413	0.000401		
12.5	0.000293	0.000305	0.000425	0.000356	0.000380		
19.1	0.000279	0.000238	0.000336	0.000348	0.000293		
25.7	0.000461	0.000505	0.000578	0.000557	0.000554		
31.4	0.000250	0.000252	0.000372	0.000393	0.000324		
38.1	0.000179	0.000288	0.000394	0.000390	0.000369		
45.0	0.000533	0.000570	0.000597	0.000583	0.000531		
49.5	0.000495	0.000524	0.000587	0.000579	0.000529		
After Annealing							
=	0.000495	0.000531	0.000630	0.000596	0.000573		

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.00%	0.00%	0.00%	0.00%	0.00%
9.0	2.12%	4.24%	8.10%	8.19%	7.94%
12.5	5.69%	6.01%	8.48%	7.07%	7.51%
19.1	5.40%	4.69%	6.71%	6.91%	5.79%
25.7	8.94%	9.95%	11.55%	11.06%	10.96%
31.4	4.85%	4.97%	7.44%	7.80%	6.40%
38.1	3.47%	5.67%	7.88%	7.73%	7.30%
45.0	10.33%	11.23%	11.93%	11.58%	10.50%
49.5	9.59%	10.33%	11.72%	11.48%	10.45%
		After Anne	ealing		
=	9.59%	10.46%	12.59%	11.83%	11.34%

Applicable limits:	Min.	Max.	Unit
Det.Spec.	0.0038	0.007	[A]

Fig. 6 Consumption on 5V_DIG vs 60 Co Irradiation Total Dose [krad (Si)]

ESA_QCA0811T_I issue 1 revision 2 page 19 of 40

Table 7 – Secondary Consumption [A] vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement data [A]

Total Dose							
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0	0.007427	0.007621	0.008029	0.008110	0.007932		
9.0	0.007356	0.008069	0.008619	0.008165	0.008478		
12.5	0.007404	0.008158	0.008666	0.008202	0.008518		
19.1	0.007399	0.008148	0.008696	0.008285	0.008555		
25.7	0.007413	0.008115	0.008676	0.008343	0.008586		
31.4	0.007399	0.008100	0.008715	0.008510	0.008562		
38.1	0.007432	0.008089	0.008733	0.008683	0.008565		
45.0	0.007428	0.008144	0.008728	0.008756	0.008590		
49.5	0.007404	0.008076	0.008688	0.008716	0.008524		
After Annealing							
=	0.007404	0.008060	0.008585	0.008599	0.008525		

b) Drift Values from Initial Measurements [A]

Mean value (s/n 11): 7.407 mA Estimated uncertainty: ± 0.28% (± 21 $\,\mu\text{A})$

Total Dose krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0	0.000000	0.000000	0.000000	0.000000	0.000000		
9.0	-0.000071	0.000448	0.000590	0.000055	0.000545		
12.5	-0.000023	0.000537	0.000637	0.000091	0.000585		
19.1	-0.000028	0.000527	0.000667	0.000175	0.000623		
25.7	-0.000014	0.000494	0.000647	0.000232	0.000654		
31.4	-0.000028	0.000479	0.000685	0.000400	0.000629		
38.1	0.000005	0.000468	0.000704	0.000573	0.000632		
45.0	0.000001	0.000523	0.000699	0.000646	0.000658		
49.5	-0.000023	0.000454	0.000659	0.000605	0.000592		
	After Annealing						
=	-0.000023	0.000439	0.000556	0.000489	0.000593		

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000%	0.000%	0.000%	0.000%	0.000%
9.0	-0.950%	5.879%	7.344%	0.673%	6.875%
12.5	-0.308%	7.050%	7.930%	1.125%	7.380%
19.1	-0.374%	6.916%	8.309%	2.155%	7.854%
25.7	-0.188%	6.476%	8.057%	2.865%	8.243%
31.4	-0.382%	6.279%	8.537%	4.931%	7.933%
38.1	0.066%	6.139%	8.769%	7.066%	7.973%
45.0	0.007%	6.861%	8.703%	7.961%	8.296%
49.5	-0.315%	5.963%	8.205%	7.462%	7.461%
		After Anne	ealing		
=	-0.310%	5.760%	6.926%	6.026%	7.475%

Applicable limits:	Min.	Max.	Unit
Det.Spec.	0.005	0.0095	[A]

ESA_QCA0811T_I issue 1 revision 2 page 20 of 40

Fig.7 Secondary Consumption vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

- - - -

Table 8 – V_{AUX} supply Voltage [V] vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a)) Measurement data	[V]	

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	9.8874	9.9105	9.9589	9.9897	9.9485
9.0	9.8785	9.8935	9.9443	9.9835	9.9337
12.5	9.8835	9.8977	9.9400	9.9820	9.9305
19.1	9.8837	9.8895	9.9357	9.9810	9.9263
25.7	9.8870	9.8829	9.9296	9.9840	9.9268
31.4	9.8843	9.8790	9.9294	9.9785	9.9216
38.1	9.8905	9.8759	9.9292	9.9745	9.9197
45.0	9.8905	9.8822	9.9278	9.9746	9.9214
49.5	9.8846	9.8722	9.9224	9.9681	9.9146
		After Anne	aling		
=	9.8847	9.8924	9.9362	9.9808	9.9297

Mean value (s/n 11): 9.885 Volt Estimated uncertainty: ± 0.03% (± 3.4 mV)

b) Drift Values from Initial Measurements [V]

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.0000	0.0000	0.0000	0.0000	0.0000
9.0	-0.0088	-0.0170	-0.0145	-0.0062	-0.0148
12.5	-0.0038	-0.0128	-0.0189	-0.0077	-0.0180
19.1	-0.0037	-0.0210	-0.0232	-0.0087	-0.0222
25.7	-0.0003	-0.0276	-0.0293	-0.0057	-0.0217
31.4	-0.0031	-0.0315	-0.0295	-0.0112	-0.0269
38.1	0.0031	-0.0346	-0.0297	-0.0152	-0.0288
45.0	0.0031	-0.0283	-0.0311	-0.0151	-0.0271
49.5	-0.0028	-0.0383	-0.0365	-0.0216	-0.0339
		After Anne	ealing		
=	-0.0027	-0.0181	-0.0227	-0.0088	-0.0188

Total Dose krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000%	0.000%	0.000%	0.000%	0.000%
9.0	-0.089%	-0.172%	-0.146%	-0.062%	-0.149%
12.5	-0.039%	-0.129%	-0.190%	-0.077%	-0.181%
19.1	-0.037%	-0.212%	-0.233%	-0.087%	-0.223%
25.7	-0.003%	-0.279%	-0.294%	-0.057%	-0.218%
31.4	-0.031%	-0.318%	-0.296%	-0.112%	-0.270%
38.1	0.032%	-0.349%	-0.298%	-0.152%	-0.290%
45.0	0.032%	-0.286%	-0.312%	-0.152%	-0.273%
49.5	-0.028%	-0.386%	-0.366%	-0.216%	-0.340%
		After Ann	ealing		
=	-0.027%	-0.183%	-0.228%	-0.089%	-0.189%

Applicable limits:	Min.	Max.	Unit
Det. Spec. (before irradiation)	9.30	10.24	[V]
WCA After 50 krad	8.57	10.80	[V]

ESA_QCA0811T_I issue 1 revision 2 page 22 of 40

Fig.8 V_{AUX} supply Voltage vs 60 Co Irradiation Total Dose [krad (Si)]

Table 9 – 2.5V Output Voltage [V] vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement data [V]

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	2.501024	2.500836	2.502927	2.501613	2.502123
9.0	2.501109	2.502417	2.504084	2.501863	2.503328
12.5	2.501096	2.502631	2.504629	2.501888	2.503528
19.1	2.501026	2.503271	2.505160	2.502088	2.504061
25.7	2.501049	2.503764	2.505657	2.502006	2.504614
31.4	2.501084	2.504120	2.505974	2.502360	2.504817
38.1	2.501012	2.504510	2.506391	2.502924	2.505207
45.0	2.501049	2.504700	2.506861	2.503517	2.505514
49.5	2.501109	2.505018	2.507003	2.503694	2.505750
		After Ann	ealing		
=	2.501084	2.502488	2.504874	2.503187	2.503458
Blue Values:	outside detail s Borderline valu	pecification lin ie(+ 3 μV, with	nit (still within in measureme	WCA limits). nt uncertainty)	

Mean value (s/n 11): 2.501064 V Estimated uncertainty: \pm 0.002% (\pm 40 $\,\mu\text{V})$

b) Drift Values from Initial Measurements [V]

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000000	0.000000	0.000000	0.000000	0.000000
9.0	0.000084	0.001581	0.001158	0.000250	0.001204
12.5	0.000071	0.001796	0.001702	0.000274	0.001404
19.1	0.000001	0.002436	0.002233	0.000474	0.001938
25.7	0.000024	0.002929	0.002730	0.000392	0.002491
31.4	0.000060	0.003284	0.003048	0.000747	0.002693
38.1	-0.000012	0.003674	0.003464	0.001311	0.003083
45.0	0.000024	0.003864	0.003934	0.001903	0.003391
49.5	0.000084	0.004182	0.004077	0.002081	0.003627
		After Ann	ealing		
=	0.000060	0.001652	0.001948	0.001573	0.001334

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000%	0.000%	0.000%	0.000%	0.000%
9.0	0.003%	0.063%	0.046%	0.010%	0.048%
12.5	0.003%	0.072%	0.068%	0.011%	0.056%
19.1	0.000%	0.097%	0.089%	0.019%	0.077%
25.7	0.001%	0.117%	0.109%	0.016%	0.100%
31.4	0.002%	0.131%	0.122%	0.030%	0.108%
38.1	0.000%	0.147%	0.138%	0.052%	0.123%
45.0	0.001%	0.155%	0.157%	0.076%	0.136%
49.5	0.003%	0.167%	0.163%	0.083%	0.145%
		After Anne	ealing		
=	0.002%	0.066%	0.078%	0.063%	0.053%

Applicable limits:	Min.	Max.	Unit
Det. Spec. (before irradiation)	2.493	2.507	[V]
WCA After 50 krad	2.486	2.514	[V]

ESA_QCA0811T_I issue 1 revision 2 page 24 of 40

Fig. 9 - 2.5V Output Voltage vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

ESA_QCA0811T_I issue 1 revision 2 page 25 of 40

Table 10 – 5V Reference Voltage [V] vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement	data [V]							
Total Dose			<i>.</i> _					
krad (SI)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13			
0.0	4.945992	4.946586	4.947257	4.945933	4.946724			
9.0	4.946266	4.952150	4.952291	4.946464	4.951783			
12.5	4.946087	4.953946	4.954229	4.946786	4.953661			
19.1	4.946074	4.957264	4.957562	4.947554	4.957111			
25.7	4.946051	4.960442	4.960740	4.948072	4.960230			
31.4	4.946111	4.963044	4.963422	4.949397	4.962522			
38.1	4.945911	4.965418	4.966244	4.952349	4.965217			
45.0	4.946029	4.967888	4.969034	4.955317	4.967796			
49.5	4.946158	4.969423	4.970772	4.957158	4.969458			
		After Ann	nealing					
=	4.946076	4.959618	4.961342	4.957741	4.960290			
						Mean value	(s/n 11)· 4	946075 \
					Estimated u	uncertainty	± 0.0018%	(± 91 μV
b) Drift Values f	rom Initial Mea	surements [V]						
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13			
0.0	0.00000	0.00000	0,00000	0.00000	0,00000			
9.0	0.000273	0.005564	0.005034	0.000531	0.005059			
12.5	0.000273	0.003360	0.000000	0.000351	0.006037			
10.1	0.000094	0.007500	0.000372	0.000002	0.000937			
25.7	0.000052	0.012957	0.010300	0.001021	0.012506			
20.7	0.000059	0.013657	0.013463	0.002139	0.015500			
31.4	0.000119	0.016459	0.010100	0.003463	0.015798			
38.1	-0.000081	0.018832	0.018988	0.006416	0.018492			
45.0	0.000037	0.021302	0.021778	0.009383	0.021071			
49.5	0.000166	0.022838	0.023516	0.011224	0.022733			
		After Ann	nealing					
=	0.000083	0.013032	0.014086	0.011808	0.013566			
c) % Drift from I	nitial Measure	ments						
Total Dose								
krad (SI)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13			
0.0	0.000%	0.000%	0.000%	0.000%	0.000%			
9.0	0.006%	0.112%	0.102%	0.011%	0.102%			
12.5	0.002%	0.149%	0.141%	0.017%	0.140%			
19.1	0.002%	0.216%	0.208%	0.033%	0.210%			
25.7	0.001%	0.280%	0.273%	0.043%	0.273%			
31.4	0.002%	0.333%	0.327%	0.070%	0.319%			
38.1	-0.002%	0.381%	0.384%	0.130%	0.374%			
45.0	0.001%	0.431%	0.440%	0.190%	0.426%			
49.5	0.003%	0.462%	0.475%	0.227%	0.460%			
		After Ann	nealing					
=	0.002%	0.263%	0.285%	0.239%	0.274%			
			Applic	able limits:		Min.	Max.	Unit
			Det.	Spec. (before	irradiation)	4.900	5.010	[V]
				WCA A	fter 50 krad	4.972	5.028	[V]

Note that the initial and post irradiation limits (from detail specification and worst case analysis) are not consistent, as can be seen by comparing the limits line in fig.10a. The applicable limits are represented with a dotted (Detailed Specification) or continuous (WCA) red lines. The discrepancy is explained by the fact that the worst case analysis assumes a zero load while the parameter (4.1) according to detail specification shall be measured with 2mA load (which also have been done here).

ESA_QCA0811T_I issue 1 revision 2 page 26 of 40

Fig. 10 - 5V Reference Voltage vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

Table 11 – Under Voltage Protection (UVP) Voltage vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

|--|

Total Dose	- (- 44	- (0	- (- (- 40	- 1- 40		
krad (SI)	s/n 11	s/n 3	s/n 5	S/N 10	S/n 13		
0.0	17.8378	17.8054	17.8121	17.7991	17.8378		
9.0	17.8345	17.8218	17.8280	17.7960	17.8504		
12.5	17.8375	17.8279	17.8343	17.7991	17.8567		
19.1	17.8377	17.8345	17.8439	17.7992	17.8663		
25.7	17.8375	17.8408	17.8505	17.8024	17.8761		
31.4	17.8378	17.8470	17.8599	17.8055	17.8791		
38.1	17.8410	17.8567	17.8665	17.8152	1 7.8855		
45.0	17.8406	17.8597	17.8726	17.8247	17.8952		
49.5	17.8377	17.8631	17.8760	17.8249	17.8952		
After Annealing							
=	17.8406	17.8409	17.8537	17.8341	17.8759		
Blue Values: outside detail specification limit (still within WCA limits)							

b) Drift Values from Initial Measurements [V]

Mean value (s/n 11): 17.8383 V Estimated uncertainty: ± 0.010% (± 1.9 mV)

Total Dose							
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0	0.0000	0.0000	0.0000	0.0000	0.0000		
9.0	-0.0033	0.0164	0.0160	-0.0031	0.0125		
12.5	-0.0003	0.0225	0.0222	0.0000	0.0189		
19.1	-0.0001	0.0291	0.0318	0.0001	0.0285		
25.7	-0.0003	0.0354	0.0384	0.0033	0.0383		
31.4	0.0000	0.0416	0.0479	0.0064	0.0413		
38.1	0.0032	0.0514	0.0545	0.0161	0.0476		
45.0	0.0028	0.0543	0.0605	0.0256	0.0574		
49.5	-0.0001	0.0577	0.0639	0.0258	0.0574		
After Annealing							
=	0.0028	0.0355	0.0416	0.0350	0.0381		

Total Dose							
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0	0.000%	0.000%	0.000%	0.000%	0.000%		
9.0	-0.019%	0.092%	0.090%	-0.017%	0.070%		
12.5	-0.002%	0.127%	0.125%	0.000%	0.106%		
19.1	-0.001%	0.164%	0.179%	0.001%	0.160%		
25.7	-0.002%	0.199%	0.216%	0.019%	0.215%		
31.4	0.000%	0.234%	0.269%	0.036%	0.231%		
38.1	0.018%	0.289%	0.306%	0.090%	0.267%		
45.0	0.015%	0.305%	0.340%	0.144%	0.322%		
49.5	-0.001%	0.324%	0.359%	0.145%	0.322%		
After Annealing							
=	0.015%	0.199%	0.233%	0.197%	0.213%		

Applicable limits:	Min.	Max.	Unit
Det. Spec. (before irradiation)	17.53	17.87	[V]
WCA After 50 krad	17.28	18.07	[V]

ESA_QCA0811T_I issue 1 revision 2 page 28 of 40

Fig. 11 Under Voltage Protection (UVP) Voltage vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

Table 12 Under Voltage Protection (UVP) Hysteresis vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement data [V]

Total Dose							
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0	1.2058	1.2248	1.2025	1.2183	1.2056		
9.0	1.2055	1.2182	1.1961	1.2151	1.1961		
12.5	1.2087	1.2150	1.1956	1.2152	1.1959		
19.1	1.2056	1.2058	1.1894	1.2121	1.1896		
25.7	1.2053	1.2026	1.1832	1.2119	1.1833		
31.4	1.2058	1.1955	1.1800	1.2088	1.1799		
38.1	1.2058	1.1957	1.1738	1.2023	1.1737		
45.0	1.2055	1.1895	1.1670	1.1895	1.1735		
49.5	1.2057	1.1862	1.1672	1.1770	1.1676		
After Annealing							
=	1.2055	1.2313	1.2121	1.2215	1.2119		

Mean value (s/n 11): 1.2059 V Estimated uncertainty: ± 0.08% (± 1.0 mV)

b) Drift Values from Initial Measurements [V]

	Total Dose						
	krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13	
	0.0	0.0000	0.0000	0.0000	0.0000	0.0000	
	9.0	-0.0003	-0.0066	-0.0065	-0.0032	-0.0096	
	12.5	0.0029	-0.0098	-0.0069	-0.0031	-0.0098	
	19.1	-0.0002	-0.0189	-0.0132	-0.0062	-0.0161	
	25.7	-0.0005	-0.0222	-0.0194	-0.0064	-0.0223	
	31.4	0.0000	-0.0293	-0.0225	-0.0095	-0.0257	
	38.1	0.0000	-0.0290	-0.0287	-0.0160	-0.0319	
	45.0	-0.0003	-0.0353	-0.0355	-0.0288	-0.0321	
	49.5	-0.0001	-0.0386	-0.0353	-0.0413	-0.0381	
After Annealing							
	=	-0.0003	0.0065	0.0096	0.0032	0.0063	

Total Dose							
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0	0.000%	0.000%	0.000%	0.000%	0.000%		
9.0	-0.027%	-0.538%	-0.539%	-0.261%	-0.794%		
12.5	0.238%	-0.799%	-0.575%	-0.253%	-0.811%		
19.1	-0.017%	-1.546%	-1.096%	-0.506%	-1.332%		
25.7	-0.044%	-1.814%	-1.609%	-0.523%	-1.853%		
31.4	0.000%	-2.388%	-1.874%	-0.777%	-2.135%		
38.1	0.000%	-2.370%	-2.387%	-1.309%	-2.647%		
45.0	-0.027%	-2.882%	-2.954%	-2.365%	-2.663%		
49.5	-0.009%	-3.152%	-2.935%	-3.387%	-3.158%		
After Annealing							
=	-0.027%	0.529%	0.796%	0.263%	0.520%		

Applicable limits:	Min.	Max.	Unit
Det. Spec. (before irradiation)	1.150	1.390	[V]
WCA After 50 krad	1.040	1.550	[V]

ESA_QCA0811T_I issue 1 revision 2 page 30 of 40

Fig. 12 Under Voltage Protection (UVP) Hysteresis vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

Table 13 - Over Voltage Protection (OVP) Treshold vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement	data [V]				
Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	12.6789	12.6004	12.6838	12.6684	12.7101
9.0	12.6685	12.6265	12.7097	12.6685	12.7306
12.5	12.6734	12.6420	12.7307	12.6685	12.7464
19.1	12.6737	12.6687	12.7570	12.6685	12.7732
25.7	12.6794	12.6945	12.7838	12.6788	12.8044
31.4	12.6741	12.7156	12.8096	12.6842	12.8202
38.1	12.6793	12.7470	12.8466	12.7002	12.8467
45.0	12.6790	12.7730	12.8678	12.7207	12.8781
49.5	12.6743	12.7889	12.8832	12.7311	12.888 <mark>9</mark>
		After Anne	ealing		
=	12.6796	12.6685	12.7684	12.7106	12.7788

Blue Values: outside detail specification limits (since the initial measurements) Red Values: outside WCA limits (since the initial measurements)

Mean value (s/n 11): 12.6760 V Estimated uncertainty: ± 0.03% (± 4.0 mV)

b) Drift Values from Initial Measurements [V]					
Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.0000	0.0000	0.0000	0.0000	0.0000
9.0	-0.0104	0.0261	0.0258	0.0001	0.0205
12.5	-0.0055	0.0416	0.0469	0.0001	0.0363
19.1	-0.0052	0.0683	0.0732	0.0001	0.0631
25.7	0.0004	0.0940	0.1000	0.0104	0.0943
31.4	-0.0048	0.1152	0.1258	0.0158	0.1101
38.1	0.0003	0.1466	0.1628	0.0318	0.1367
45.0	0.0001	0.1726	0.1840	0.0523	0.1680
49.5	-0.0047	0.1885	0.1994	0.0627	0.1788
		After Anne	ealing		
=	0.0006	0.0681	0.0845	0.0422	0.0687
Total Dose	miliai weasuren	ients			
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000%	0.000%	0.000%	0.000%	0.000%
9.0	-0.082%	0.207%	0.204%	0.001%	0.161%
12.5	-0.044%	0.330%	0.370%	0.001%	0.285%
19.1	-0.041%	0.542%	0.577%	0.001%	0.496%
25.7	0.003%	0.746%	0.788%	0.082%	0.742%
31.4	-0.038%	0.914%	0.992%	0.125%	0.866%
38.1	0.003%	1.163%	1.284%	0.251%	1.075%
45.0	0.001%	1.370%	1.450%	0.413%	1.322%
49.5	-0.037%	1.496%	1.572%	0.495%	1.406%
		After Anne	aling		
=	0.005%	0.540%	0.667%	0.333%	0.540%
				Applicable lim	its:

Applicable limits:	Min.	Max.	Unit
Det. Spec. (before irradiation)	13.37	14.00	[V]
WCA After 50 krad	12.64	14.61	[V]

Pre-irradiation measurements performed at ESTEC of OVP Over-Voltage Protection (see table 13) resulted in values lower than the minimum limit stated in ETCA 8090.0832-1 detail specification, table 2. The measured relative drift with TID has been confirmed in the measurements performed at ETCA (see PWM-PSU-TR-0064).

ESA_QCA0811T_I issue 1 revision 2 page 32 of 40

Fig. 13 Over Voltage Protection (OVP) Treshold vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

Table 14 Clock Frequency [Hz] vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement data [Hz]

Total Dose							
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13		
0.0	195,131.09	194,796.58	195,221.34	195,554.76	194,857.64		
9.0	195,000.61	194,579.75	195,815.85	195,471.94	194,850.08		
12.5	195,012.54	193,589.19	195,081.13	195,558.57	193,900.11		
19.1	195,065.28	191,335.08	193,275.28	195,695.23	191,683.83		
25.7	195,127.16	188,975.86	191,341.30	195,903.17	1 <mark>89,406.7</mark> 1		
31.4	195,030.52	186,758.09	189,371.42	195,509.18	187,410.98		
38.1	195,162.35	184,511.12	187,372.11	194,040.56	185,081.79		
45.0	195,174.92	182,318.41	185,401.45	192,154.69	182,843.04		
49.5	195,063.53	180,796.49	184,027.83	190,547.88	181,306.58		
After Annealing							
= 195,075.22 182,035.46 185,762.18 191,098.10 186,517.							
Blue Values: outside detail specification limit (still within WCA limits)							

Red Values: outside WCA limits

Mean value (s/n 11): 195'084 Hz Estimated uncertainty: ± 0.03% (± 60 Hz)

b) Drift Values from Initial Measurements [Hz]

s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.0	0.0	0.0	0.0
-130.5	-216.8	594.5	-82.8	-7.6
-118.6	-1,207.4	-140.2	3.8	-957.5
-65.8	-3,461.5	-1,946.1	140.5	-3,173.8
-3.9	-5,820.7	-3,880.0	348.4	-5,450.9
-100.6	-8,038.5	-5,849.9	-45.6	-7,446.7
31.3	-10,285.5	-7,849.2	-1,514.2	-9,775.9
43.8	-12,478.2	-9,819.9	-3,400.1	-12,014.6
-67.6	-14,000.1	-11,193.5	-5,006.9	-13,551.1
	After Ann	ealing		
-55.9	-12,761.1	-9,459.2	-4,456.7	-8,340.5
	s/n 11 0.0 -130.5 -118.6 -65.8 -3.9 -100.6 31.3 43.8 -67.6 -55.9	s/n 11 s/n 3 0.0 0.0 -130.5 -216.8 -118.6 -1,207.4 -65.8 -3,461.5 -3.9 -5,820.7 -100.6 -8,038.5 31.3 -10,285.5 43.8 -12,478.2 -67.6 -14,000.1 After Ann -55.9 -12,761.1	s/n 11 s/n 3 s/n 5 0.0 0.0 0.0 -130.5 -216.8 594.5 -118.6 -1,207.4 -140.2 -65.8 -3,461.5 -1,946.1 -3.9 -5,820.7 -3,880.0 -100.6 -8,038.5 -5,849.9 31.3 -10,285.5 -7,849.2 43.8 -12,478.2 -9,819.9 -67.6 -14,000.1 -11,193.5 After Annealing -55.9 -12,761.1 -9,459.2	s/n 11 s/n 3 s/n 5 s/n 10 0.0 0.0 0.0 0.0 -130.5 -216.8 594.5 -82.8 -118.6 -1,207.4 -140.2 3.8 -65.8 -3,461.5 -1,946.1 140.5 -3.9 -5,820.7 -3,880.0 348.4 -100.6 -8,038.5 -5,849.9 -45.6 31.3 -10,285.5 -7,849.2 -1,514.2 43.8 -12,478.2 -9,819.9 -3,400.1 -67.6 -14,000.1 -11,193.5 -5,006.9 After Annealing -55.9 -12,761.1 -9,459.2 -4,456.7

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000%	0.000%	0.000%	0.000%	0.000%
9.0	-0.067%	-0.111%	0.305%	-0.042%	-0.004%
12.5	-0.061%	-0.620%	-0.072%	0.002%	-0.491%
19.1	-0.034%	-1.777%	-0.997%	0.072%	-1.629%
25.7	-0.002%	-2.988%	-1.988%	0.178%	-2.797%
31.4	-0.052%	-4.127%	-2.997%	-0.023%	-3.822%
38.1	0.016%	-5.280%	-4.021%	-0.774%	-5.017%
45.0	0.022%	-6.406%	-5.030%	-1.739%	-6.166%
49.5	-0.035%	-7.187%	-5.734%	-2.560%	-6.954%
		After Anne	ealing		
=	-0.029%	-6.551%	-4.845%	-2.279%	-4.280%

Applicable limits:	Min.	Max.	Unit
Det. Spec. (before irradiation)	193'500	199'400	[Hz]
WCA After 50 krad	192'000	201'000	[Hz]

ESA_QCA0811T_I issue 1 revision 2 page 34 of 40

Fig. 14 Clock Frequency [Hz] vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

ESA_QCA0811T_I issue 1 revision 2 page 35 of 40

Table 15 TP2 Voltage (Protection Flag) vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

a) Measurement data [V]

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000690	0.000690	0.000585	0.000530	0.000635
9.0	0.000795	0.001060	0.000955	0.000795	0.001010
12.5	0.000690	0.001225	0.001060	0.000640	0.001010
19.1	0.000905	0.001065	0.001225	0.000640	0.001330
25.7	0.000745	0.001380	0.001225	0.000690	0.000955
31.4	0.000690	0.001330	0.001220	0.000800	0.001010
38.1	0.000690	0.001435	0.001170	0.001010	0.001060
45.0	0.000740	0.001115	0.001170	0.001010	0.001065
49.5	0.000640	0.001065	0.001010	0.001120	0.001010
		After Ann	ealing		
=	0.000850	0.000530	0.000425	0.000850	0.000535

Mean value (s/n 11): 743 μV Estimated uncertainty: ± 10.6% (± 80 $\,\mu V)$

b) Drift Values from Initial Measurements [V]

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.000000	0.000000	0.000000	0.000000	0.000000
9.0	0.000105	0.000370	0.000370	0.000265	0.000375
12.5	0.000000	0.000535	0.000475	0.000110	0.000375
19.1	0.000215	0.000375	0.000640	0.000110	0.000695
25.7	0.000055	0.000690	0.000640	0.000160	0.000320
31.4	0.000000	0.000640	0.000635	0.000270	0.000375
38.1	0.000000	0.000745	0.000585	0.000480	0.000425
45.0	0.000050	0.000425	0.000585	0.000480	0.000430
49.5	-0.000050	0.000375	0.000425	0.000590	0.000375
		After Ann	nealing		
=	0.000160	-0.000160	-0.000160	0.000320	-0.000100

Total Dose					
krad (Si)	s/n 11	s/n 3	s/n 5	s/n 10	s/n 13
0.0	0.00%	0.00%	0.00%	0.00%	0.00%
9.0	15.22%	53.62%	63.25%	50.00%	59.06%
12.5	0.00%	77.54%	81.20%	20.75%	59.06%
19.1	31.16%	54.35%	109.40%	20.75%	109.45%
25.7	7.97%	100.00%	109.40%	30.19%	50.39%
31.4	0.00%	92.75%	108.55%	50.94%	59.06%
38.1	0.00%	107.97%	100.00%	90.57%	66.93%
45.0	7.2%	61.6%	100.0%	90.6%	67.7%
49.5	-7.2%	54.3%	72.6%	111.3%	59.1%
		After Ann	ealing		
=	23.2%	-23.2%	-27.4%	60.4%	-15.7%

Applicable limits:	Min.	Max.	Unit
Det.Spec.	0	0.006	[V]

Fig. 15 TP2 Voltage (Protection Flag) vs ⁶⁰Co Irradiation Total Dose [krad (Si)]

5

CONCLUSION

Four devices (sn's 03, 05, 13 and s/n 10) were irradiated (three biased + one unbiased) up to $49.5(\pm 5\%)$ krad(Si). After the irradiation, all devices were annealed for 24 hrs at room temperature followed by 168hrs at 100°C; during annealing all devices under test were biased. One more device (s/n 11) was used as control sample during the intermediate measurements. Table 16 summarises the irradiation test history.

Table 1	16	Irradiation	Test	History	
---------	----	-------------	------	---------	--

Ston	Location	Total Dose	Dose Rate	Measured
Step	Location	krad (Si)	(Si)Rad/min	Parameters
Full init. measurements	ETCA ¹	-	-	Table 2 D.S.
init. measurements	ESTEC	-	-	Table 2 D.S. subset
Irradiation step 1	ESTEC	9.0	0.65	Bias Voltages
Intermediate meas	ESTEC	-	-	Table 2 D.S. subset
Irradiation step 2	ESTEC	12.5	0.65	Bias Voltages
Intermediate meas.	ESTEC	-	-	Table 2 D.S. subset
Irradiation step 3	ESTEC	19.1	0.65	Bias Voltages
Intermediate meas.	ESTEC	-	-	Table 2 D.S. subset
Irradiation step 4	ESTEC	25.7	0.65	Bias Voltages
Intermediate meas.	ESTEC	-	-	Table 2 D.S. subset
Irradiation step 5	ESTEC	31.4	0.65	Bias Voltages
Intermediate meas.	ESTEC	-	-	Table 2 D.S. subset
Irradiation step 6	ESTEC	38.0	0.65	Bias Voltages
Intermediate meas.	ESTEC	-	-	Table 2 D.S. subset
Irradiation step 7	ESTEC	45.0	0.65	Bias Voltages
Intermediate meas.	ESTEC	-	-	Table 2 D.S. subset
Irradiation step 8	ESTEC	49.5	0.65	Bias Voltages
Intermediate meas.	ESTEC	-	-	Table 2 D.S. subset
Full measurements	ETCA ¹	-	-	Table 2 D.S.
24 hrs annealing R.T.	ETCA ¹	-	-	-
Full measurements	ETCA ¹	-	-	Table 2 D.S.
168 hrs annealing 100°C	ETCA ¹	-	-	-
Full measurements	ETCA ¹	-	-	Table 2 D.S.
Final measurements	ESTEC	-	-	Table 2 D.S. subset

Note 1 - data reported, separately, in ThalesAleniaSpace ETCA "Post-irradiation test report " ref. PWM-PSU-TR-0064.

No catastrophic failures were observed up to 49.51 krad(Si). The parametric degradation induced by gamma radiation has been summarized in table 17.

The only parameter outside specified limits, after 49.51 krad(Si), was (9.1) Clock frequency for all devices. As a consequence of this TID test the detail specification and the WCA analysis has been updated with new TID drift limits for the clock frequency. Also the limits for the 5V reference voltage and the UVP Voltage Threshold parameters have been updated.

Pre-irradiation measurements performed at ESTEC of OVP Over-Voltage Protection (see table 13) resulted in values lower than the minimum limit stated in detail specification, table 2. However, the measured relative drift with TID has been confirmed to be satisfying in the measurements performed at ETCA (see PWM-PSU-TR-0064).

N° (*)	Parameter	Table	Fig.	Remarks
1.1	Primary Consumption	4a-4c	4a-4c	Still within limits for all devices; max drift ≈ -4%
1.4	Primary Consumption	5a-5c	5a-5c	Still within limits for all devices; max drift ≈ +3%
1.5	Consumption on 5V_DIG	6a-6c	6a-6c	Still within limits for all devices. No clear indication of TID dependency.
1.6	Secondary Consumption	7a-7c	7a-7c	Still within limits for all devices; max drift ≈ +8%
2.1	Vaux Supply voltage	8a-8c	8a-8c	Still within limits for all devices; max drift ≈ –0.4%
3.1	2.5V output voltage	9a-9c	9a-9c	Still within limits for all devices; max drift ≈ +0.2%
4.1	5V reference voltage	10a-10c	10a-10c	Specified limits not consistent (see tables 3.a 3.b and fig.10a). Max drift \approx +0.4%
5.1	UVP Threshold Voltage	11a-11c	11a-11c	Still within WCA limits for all devices; max drift ≈ +0.4%. S/n 13 outside initial max limit after 25.6 krad(Si) S/n 10 outside initial max limit after 45.0 krad(Si)
5.2	UVP Hysteresis	12a-12c	12a-12c	Still within limits for all devices; max drift ≈ -3.5 %
6.1	OVP Threshold Voltage	13a-13c	13a-13c	All devices out of spec. limits since the initial measurements. Max drift ≈ +1.6% NB This discrepancy is addressed to be an affect by different measurement set-ups.
9.1	Clock Frequency	14a-14c	14a-14c	On all biased devices, below the min.limit after 19.1 krad(Si); on the unbiased device, after 45.0 krad(Si). NB: After update of applicable documents, TID drift are within specified limits.
11.1	TP2 voltage	15a-15c	15a-15c	Still within limits for all devices. No clear indication of TID dependency.

Table 17 Summary of TID test results at ESTEC (D.S. Table 2 subset)

(*) reference to parameter nr. in table 2 of ETCA 8090.0832-1 detail specification.

All biased devices failed parameter 9.1 (clock frequency) after total dose of 19.1 krad(Si) as shown in table 14. The unbiased device (s/n 10) failed the same parameter after a total dose of 45 krad(Si). The TID drift for this parameter has been updated in later revisions of the detail specification and worst case analysis.

Devices s/n 13 and s/n 5 show marginal out of spec. values (det.spec. limits) in UVP (Under Voltage Protection) Threshold Voltage after a total dose of 25.6 krad(Si) and 45 krad(Si) respectively. However, both devices are still within the WCA limits, see table 11.

After the annealing, the device status can be summarized as in the following table 18.

Table 18 Summary of test results after the an	nealing (24 hrs at room temperature plus 168
hrs at 100°C)	

N° (*)	Parameter	Table	Fig.	Remarks
1.1	Primary Consumption	4a-4c	4a-4c	Degradation not recovered by the annealing; max drift after annealing ≈ -5 %
1.4	Primary Consumption	5a-5c	5a-5c	Degradation not recovered by the annealing; max drift after annealing \approx + 3 %
1.5	Consumption on 5V_DIG	6a-6c	6a-6c	Degradation not recovered by the annealing
1.6	Secondary Consumption	7a-7c	7a-7c	Degradation slightly recovered by the annealing, max drift after annealing $\approx +7.5\%$
2.1	Vaux Supply voltage	8a-8c	8a-8c	Degradation slightly recovered by the annealing, max drift after annealing $\approx -0.22\%$
3.1	2.5V output voltage	9a-9c	9a-9c	Degradation partially recovered by the annealing, max drift after annealing \approx + 0.078 %
4.1	5V reference voltage	10a-10c	10a-10c	Degradation partially recovered by the annealing, max drift after annealing \approx + 0.28 %
5.1	UVP Threshold Voltage	11a-11c	11a-11c	Degradation partially recovered by the annealing with final measurements within the initial limits for all devices (s/n 13 still marginally outside initial max limit). Max drift after annealing \approx +0.23%.
5.2	UVP Hysteresis	12a-12c	12a-12c	Degradation fully recovered by the annealing; max drift after annealing \approx + 0.8 %
6.1	OVP Threshold Voltage	13a-13c	13a-13c	Degradation partially recovered by the annealing, max drift after annealing \approx + 0.67 %
9.1	Clock Frequency	14a-14c	14a-14c	Degradation partially recovered by the annealing, max drift after annealing \approx - 6.55 % On all devices, meas values still below the minimum limits. <i>NB: After update of applicable documents, TID drift are within</i> <i>specified limits.</i>
11.1	TP2 voltage	15a-15c	15a-15c	Always within limits for all devices. No clear indication of TID/Annealing dependency.

(*) reference to parameter nr. in table 2 of ETCA 8090.0832-1 detail specification.

6 APPENDIX A MEASUREMENTS FROM ETCA

Manufacturer full electrical measurements results are reported in the document nr. **PWM-PSU-TR-0064**.

