

MOHA:

the MIRAS Optical Harness for SMOS

<u>M. Martin-Neira</u>, W. Rits, F. Garat (ESA-ESTEC) K. Kudielka, M. Mosberger (Oerlikon - CH) M. Tornell (CRISA - E)

> Special Acknowledgement: Igor Zayer (TEC-MME)

- The SMOS mission and the MIRAS payload
- MOHA The MIRAS Optical Harness
 - Function
 - Hardware
- Challenges and solutions
- MOHA status and test results
- Conclusion

To provide global maps of soil moisture and ocean salinity

- Global <u>soil moisture</u> and <u>ocean salinity</u> data are vital for improving our knowledge of Earth's water cycle.
- Better forecasts of weather, extreme events, and seasonal climate can be expected.

Soil moisture map

Ocean salinity map

Measurement Principle

- Moisture and salinity decrease the emissivity of soil and seawater respectively, and thereby affect microwave radiation emitted from the surface of the Earth.
- A two-dimensional 'measurement image' is taken every 1.2 seconds
- As the satellite moves along its orbital path each observed area is seen under various viewing angles
- Due to its polar orbit at 763km, SMOS will achieve global coverage every three days

SMOS Status

The MIRAS Payload

- The MIRAS payload: <u>Microwave Imaging</u> <u>Radiometer with Aperture Synthesis</u>
- Exploits the interferometry principle to obtain two-dimensional radiometric images
- Operates between 1400 and 1427 MHz
- 72 small receivers (LICEF) measure the phase difference of the incident thermal radiation
- Observations from all possible combinations of receiver pairs are cross-correlated using a correlator unit (CCU)
- The image is obtained by the two-dimensional Fourier transform of the map of correlation coefficients
- Prime of MIRAS: EADS-CASA Espacio (E)

Data Processing

The basic function of the MOHA Subsystem in SMOS is:

- To generate, and to optically disseminate a reference clock signal to 72 LICEF receivers, and to 12 auxiliary units
- To transmit the radiation data from the LICEF receivers to the CCU correlator unit, using 72 optical links in parallel
- To de-multiplex the data and to deliver it, in parallel, to the correlator via 6x72 = 432 LVDS interfaces

The reasons for using an optical harness are:

- Very low electro-magnetic emission levels
- Insensitivity to ground differential voltages
- Galvanic isolation
- Optical cables are flexible and light-weight
- Better phase stability over temperature and if bended

MIRAS in the Maxwell EMC Chamber

MIRAS Performances

Photonic Technologies for Beam Forming Payloads, ESTEC, 21 Nov 2008

1....

MOHA Functional Block Diagram

The MOHA Flight Model consists of:

- 1 x MOHA/CCU 2 reference clock transmitters and 72 data receivers / demultiplexers
- 1 x optical 2x12 splitter
- 12 x optical 1x8 splitters, resulting in 96 optical reference clock outputs
- 72 x MOHA/LICEF 1 reference clock receiver, 1 radiation data transmitter
- 72 x optical data cable (7m)
- 12 x MOHA/CMN 2 reference clock receivers (nominal and redundant)

MIRAS Hub

Basic properties of all optical links:

- Transmission band: 1310nm
- Transmission medium: single-mode optical fibre
- Optical connectors: AVIM
- Optical transmitters:

semiconductor laser diodes with fibre pigtails

• Optical receivers:

pin photodiodes / transimpedance amplifiers with fibre pigtails

- Optical splitters: fused fibre couplers
- Reference clock frequency: 55.84MHz
- Data rate per channel: 111.68Mbit/s

MOHA/CCU

- 1 transmitter module and 6 receiver modules (12 channels each)
 - 72 non-redundant optical receivers: individual supply cross-strapping and short-circuit protection
 - Redundant data recovery and processing by FPGAs
 - Power consumption: 17W (0.24W/channel)
 - Mass: 6.6kg

MOHA/CCU, integrated with CCU, during functional testing

MOHA/CCU

MOHA/CCU -cont. -

MOHA/CCU and CCU integrated in MIRAS

- 5MOS 1x8 and 2x12 splitters are implemented by cascades of fused 2x2 couplers, interconnected by splices
 - 2x12 splitter uses asymmetric couplers
 - Aggregate excess loss: <1.3dB
 - Clock skew: all fibre lengths (input to output) are within ±10mm
 - Mass: 235g/270g

2x12 optical splitter, with fibre pigtails and AVIM connectors

MOHA/LICEF

- Worst-case clock skew across all 72 modules: 0.45ns p-p
 - Nominal optical input power: -20dBm
 - Jitter at minimum optical input power (-27dBm): <40ps RMS
 - Envelope: 80x60x20mm³
 - Power consumption: 0.5W
 - Mass: 130g

MOHA/LICEF circuit card, carrying an optical transmitter and an optical receiver

MOHA/LICEF module, ready to be plugged into a LICEF

(1) Component qualification

Suitable fibre-optic and opto-electronic components were not available space-qualified off-the-shelf:

- Optical fibre cables
- Optical splitters
- Optical transmitters
- Optical receivers

For power consumption and performance reason, also some commercial electrical components had to be used:

- Laser drivers
- Discriminators

(1) Component qualification -cont. -

The large number of components justified a dedicated campaign consisting of:

- Commercial component <u>evaluation testing</u>, to find out among several candidates – the component most suitable for the application
- <u>Qualification testing</u>, to demonstrate that each component can meet its performance requirements for the specified lifetime
- Procurement of the flight components and their constituents from a single production lot, in order to eliminate as far as possible any process variations
- 100% screening and burn-in of the flight components, in order to stabilise their characteristics and to detect early failures
- Lot acceptance testing on samples of the flight lot, to ensure that it meets the defined quality requirements

MIRAS Arm Segment

(2) Clock skew and data recovery

- There exist two important timing requirements on the MOHA S/S:
 - Skew of reference clock distribution: <±1ns
 - Skew of reference clock distribution and data transmission: < ±3ns (round-trip timing to facilitate proper data recovery)
- In order to achieve these requirements, the delays of all modules are equalised using precise delay measurements and customised fibre cutback
- Also, the parameters of all optical transmitters have to be configured by select-on-test resistors
- Consequently, each MOHA/LICEF passes a sequence of approx. 15 test/manufacturing steps
- In total, about 1500 separate test/manufacturing activities have to be performed, resulting in a very complex AIT flow

• All flight units and spare/qualification units had been successfully tested and delivered by end of September 2006

Parameter	Requirement	Result	Remark
Reference clock distribution: skew	< ±1 ns	±0.15 ns	nominal
		±0.35 ns	worst-case
Reference clock distribution: RMS jitter	< 50 ps	12 ps	nominal
		46 ps	worst-case
Bit error probability of data	< 10 ⁻¹⁰	< 10 ⁻¹⁰	99% confidence
transmission per channel			(Note 1)
MOHA/CCU power consumption	< 20 W	17 W	
MOHA/LICEF power consumption	< 0.75 W	0.5 W	

Note 1:

Not a single bit error was detected during subsystem testing of all 72 channels

Future: SMOSops

Conclusion

- SMOS is the first European space mission to extensively employ on-board fibre-optic communications
- Very low electro-magnetic emission levels, as well as fibre cable flexibility and phase stability have been the main drivers
- The absence of correlation offsets is by large thanks to MOHA
- Several commercial fibre-optic and electrical components have been successfully qualified for the MIRAS Optical Harness
- For in total more than 100 MOHA modules to be delivered, a special production and test facility has been established and used
- Delivery of the last MOHA flight unit took place end of September 2006
- The launch of SMOS is scheduled for the second half of 2009
- An centralised calibration system being investigated for SMOSops