Photonic beamforming network for multibeam satellite-on-board phasedarray antennas

M. A. Piqueras, <u>F. Cuesta-Soto</u>, P. Villalba, A. Martí, A. Hakansson, J. Perdigués, G. Caille

ICSO Conference October 14-17th, 2008 - Toulouse

🔘 Valencia Nanophotonics Technology Center

PRESENTATION OUTLINE

- Beam Handling/Processing
- Optical Beamforming
- Proposed Architecture
- Implementation
- Test and Results
- Technology Comparison
- Further Developments
- Conclusions

Broadband Telecom Satellites

State-of-the-art

(Europe) French STENTOR mission

- 48 SSPAs
- 3 beams (Ku-band)

(US) SPACEWAY (Ka-band)

- 3000 SSPAs
- 24 beams (Ku-band)

DirecTV's Spaceway F1 satellite undergoes final preparations for its launch aboard a Zenit-3SL vehicle. **(Boeing photo)**

- Problem to be addressed
 - FUTURE SCENARIOS
 - Coverage of a wide area by multiple fixed narrow beams
 - Direct Radiating Array (DRA) scheme
 - Hundred of antenna elements to be feed
 - Multibeam capability
 - "Europe + Maghreb" coverage:

Antenna = 256-elements DRA

- Problem to be addressed
 - •• High complexity
 - •• High mass and volume of the classical RF implementations
 - Heavy impact in the **digital beamforming** approach.
 - •• High mass of the feeding cables (hundred of antennas)
 - Crosstalk and EMI issues

OPTICAL BEAMFORMING

- Solution proposed
 - To use photonic technology for the Beamforming Network
 - Size reduction
 - •• High integration of several functionalities in a single chip
 - •• High precision in the phase shifting (SOI technology)
 - •• Mass reduction: using optical fiber for the antenna feeding
 - Huge electrical **bandwidth** (typically > 40 GHz).
 - EMI Free technology
 - Excellent crosstalk
 - •• Scalability with low size/mass

OPTICAL BEAMFORMING

Optical Beam Forming

The ESA is assessing the benefits of using optical beam forming networks on Telecom and EO satellites for steerable pencil or spotlight beams, or for adjusting broadband multimedia beams.

Different scenarios:

-Wide bandwidth requirements: True Time Delay (TTD) architectures

-Narrow bandwidth: no need of TTD

Broadband Telecom Satellites

- •Ka band (30GHz) multimedia satellites
- •Large number of beams (200)
- •Small Steering Angles (few degrees)
- •LC SLMs used for Amplitude and Phase control (true time delay not required)
- •Integrated photonics implementing beamforming networks as Butler Matrix (true time delay not required)

Errico Armandillo (ESA), Space Optoelectronic Day, Cork 7 April 2006

PROPOSED ARCHITECTURE

PROPOSED ARCHITECTURE

Butler Matrix: Principle of Operation

- Orthogonal beams
- Passive structure: couplers and phase shifters
- •• Scalable solution (FFT structure)
- •• Very well known solution

PROPOSED ARCHITECTURE

OPTICAL Butler Matrix: Heterodine Generation

IMPLEMENTATION

SOI TECHNOLOGY

• CMOS compatible tech.

- Thin silicon (Si) layer on top of an Oxide (SiO₂) cladding
- Si thickness = 200 nm
- SiO₂ layer = 3000 nm
- Waveguide width = 500 nm

- Mode profile highly confined
- Effective refraction index @ 1550 nm = 2,36

TESTS AND RESULTS

SEM PHOTOGRAPH

TESTS AND RESULTS

TESTS AND RESULTS

Parameter	Specification	Obtained
Standard deviation of phase errors	σ _φ < 10/√2	σ _φ < 5 - 10º
Standard deviation of amplitude errors	σ_a < 0.5 dB	σ_a < 2 dB
		Due to the

in-chip test method

- Phase performance in line with the specifications
- Amplitude performance worse than specifications
 - Mainly due to the coupling method (introduce extra attenuations)
 - Amplitude equalization is expected in future devices.
 - Chip post-proccesing

TECHNOLOGY COMPARISON

 Targeted for high complexity beamforming networks for array antennas (DRA)

Example: 44 beams. 256 antenna elements

BFN option	Estimated mass	Estimated volume	DC consump.	EMI FREE	Upgradeability in N° of antenna elements
'Pure-RF' with Butler Matrixes	100%	100%	100%	NO	Low/medium
'opto-μwave'	70%	<1%	200%	YES	High
Comments	Cable vs. Fiber mass shaving has not been considered	Greater for large antennas	Including added amplifiers to compensate converion losses	Infinite isolation	Easy for large number of antenna elements (in the Opto-uwave)

FURTHER DEVELOPMENTS

- Improvement of the phase/amplitude performance
- Extend higher number of I/O ports
- Implementation of the whole heterodine structure (RF performance)
- Whole system packaged (including the fiber coupling)

FURTHER DEVELOPMENTS

Optimised OPTICAL Butler Matrix (OBM)

•Basic Unit (BU) for the OBFN design

•Based on 8x8 Butler Matrices and a **proprietary 2N beam multiplication solution**: simpler than the truncated 16x16 alternative (especially much fewer line crossing's)

•Heterodine distribution included in the basic unit:

•Result in a 8x16 Butler matrix "RF-to-RF"

•Different Basic Units can be

interconnected with optical fiber

•Do not requires the integration of optical switches inside the block.

CONCLUSIONS

- Successful fabrication of an SOI integrated 8x8 Optical Butler Matrix
- The performance in terms of phase/amplitude obtained is comparable with the traditional electrical solution
- Low mass and size
- Remote feeding by optical fibre: weigh reduction
- EMI free technology
- Promising alternative for the implementation of Beamforming systems.

THANK YOU FOR YOUR ATTENTION

