Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology

Chris Roeloffzen

TELECOMMUNICATION ENGINEERING

University of Twonte Enochado - The Notherlando **ESA-ESTEC** Presentation – November 21 2008

University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) Centre for Telematics and Information Technology (CTIT) **Telecommunication Engineering Group (TE)**

c.g.h.roeloffzen@utwente.nl

Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology

TELECOMMUNICATION ENGINEERING

University of Twonte Enschole - The Notherlands

C. G. H. Roeloffzen^{*a}, A. Meijerink^a, L. Zhuang^a, D. A. I. Marpaung^a, R. G. Heideman^b, A. Leinse^b, M. Hoekman^b, W. van Etten^a.

^aUniversity of Twente, Faculty of Electrical Engineering, Mathematics and Computer Science, Telecommunication Engineering Group, P.O. Box 217, 7500 AE Enschede, The Netherlands ^bLioniX B.V., P.O. Box 456, 7500 AH Enschede, The Netherlands

- 1. Introduction;
- 2. System overview & requirements;
- 3. Optical beamformer
 - Ring resonator-based delays;
 - OBFN structure;
 - Chip fabrication;
 - OBFN control block;
 - E/O & O/E conversion;
 - System performance.
- 4. Conclusions

1. Introduction: aim and purpose

Aim:

Development of a novel K_u-band antenna for airborne reception of satellite signals, using a broadband conformal phased array

Purpose:

- Live weather reports;
- High-speed Internet access;
- Live television through Digital Video Broadcasting via satellite (DVB-s)

1. Introduction: specific targets

Specific targets:

- Conformal phased array structure definition;
- Broadband stacked patch antenna elements;
- Broadband integrated optical beamformer based on optical ring resonators in CMOS-compatible waveguide technology;
- Experimental demonstrator.

2. System overview & requirements

Delay compensation by phase shifters? \rightarrow beam squint at outer frequencies!

 \rightarrow (Broadband) time delay compensation required !

3. Optical beamformer: overview

3. Optical beamformer: ORR-based delays

Single ring resonator:

Ø

K

- T : Round trip time;
- κ : Power coupling coefficient;
- ϕ : Additional phase.
- Periodic transfer function;
- Flat magnitude response.
- Phase transition around resonance frequency;
- Bell-shaped group delay response;
- Trade-off: delay vs. bandwidth

$$-\frac{1}{2T} \quad -\frac{1}{4T} \quad 0 \quad \frac{1}{4T} \quad \frac{1}{2T} \\ \rightarrow f$$

3. Optical beamformer: ORR-based delays

- Rippled group delay response;
- Enhanced bandwidth;
- Trade-off: delay vs. bandwidth vs. delay ripple vs. no. rings;

Or in other words: for given delay ripple requirements:

Required no. rings is roughly proportional to product of required optical bandwidth and maximum delay

3. Optical beamformer: 8x1 OBFN

8x1 Optical beam forming network (OBFN)

3. Optical beamformer: chip fabrication

Fabrication process of TriPleX Technology

3. Optical beamformer: chip fabrication

E. D.

TriPleX[™] results

	Group birefringence (B _g)	Channel attenuation (dB/cm)	Polarization dependent loss (PDL, in dB)	Insertion loss (IL) without spot size converter (dB)
1-2 μm ~1μm	≤ 1×10 ⁻⁴	≤ 0.10	0.12 ¹	1.4 ²
2 μm ~100 nm	1.1×10 ⁻¹	0.12	0.20 ¹	8.0 ^{2,3}

- ¹: chip length 3 cm
- ²: here, small core fibers were used (MFD of 3.5 μ m)
- ³: minimal bend radius ~400 μ m

3. Optical beamformer: 8x1 OBFN chip

Single-chip 8x1 OBFN realized in CMOS-compatible optical waveguide technology

3. Optical beamformer: OBFN control block

3. Optical beamformer: OBFN measurements

OBFN Measurement results

Filter requirements:

- Broad pass band and stop band (1.2 GHz);
- 1.9 GHz guard band;
- High stop band suppression;
- Low pass band ripple and dispersion;
- Low loss;
- Compact;
- Same technology as OBFN.

single-sideband modulation with suppressed carrier (SSB-SC)

electrical » optical

1 chip ! optical » electrical

22/30

TIA

Optical sideband filter chip in the same technology as the OBFN

MZI + Ring

Measured filter response

Spectrum measurement of modulated optical signal

Optical heterodyning technique:

Spectrum measurement of modulated optical signal

Measured filter response, and measured spectrum of modulated optical signal, with and without sideband-filtering

RF phase response measurements

Signal Frequency (GHz)

Signal combination measurements

RF input 0-1 GHz

Measured output RF power of beamformer with intensity modulation and direct detection, for

- 1 channel,
- 2 combined channels,
- 4 combined channels

3. Optical beamformer: Conclusions

Conclusions

- A novel squint-free, continuously tunable beamformer mechanism for a phased array antenna system has been described and partly demonstrated. It is based on filter-based optical SSB-SC modulation, and ORR-based OBFN, and balanced coherent detection.
- This scheme minimizes the bandwidth requirements on OBFN and enhances the dynamic range.
- Different measurements on optical beamformer chip successfully verify the feasibility of the proposed system.

Thank you!

Thank you!

Questions?

3. Optical beamformer: System setup

Further demonstration of chip functionality

- Demonstrate optical homodyning by balanced detection;
- Demonstrate delay of broadband RF signal in OBFN;
- Combine multiple signals in OBFN by optical phase-locking .

3. Optical beamformer: noise performance

Losses, noise, and distortion

3. Optical beamformer: noise performance

- La Verla

gives an expression for the modulated signal

$$E_{\text{MZM},m}(t) = \frac{E_{\text{in},m}(t)}{2\sqrt{L_{\text{x}}}} \left[\exp\left\{ j \frac{\pi \Delta V}{2V_{\pi,\text{DC}}} \right\} \prod_{n} \sum_{k_{n}} J_{k_{n}}(A_{n}) \exp\left\{ j k_{n} \left[\phi_{n} + \frac{\pi}{2}\right] \right\} \right] \\ + \exp\left\{ -j \frac{\pi \Delta V}{2V_{\pi,\text{DC}}} \right\} \prod_{n} \sum_{k_{n}} J_{k_{n}}(A_{n}) \exp\left\{ j k_{n} \left[\phi_{n} + \frac{3\pi}{2}\right] \right\} \right] \\ = \frac{E_{\text{in},m}(t)}{2\sqrt{L_{\text{x}}}} \sum_{k_{1}} \cdots \sum_{k_{N}} \left[\prod_{n} J_{k_{n}}(A_{n}) \right] \\ \cdot \left[\exp\left\{ j \frac{\pi \Delta V}{2V_{\pi,\text{DC}}} + j \sum_{n} k_{n} \left[\phi_{n} + \frac{\pi}{2}\right] \right\} \right] \\ + \exp\left\{ -j \frac{\pi \Delta V}{2V_{\pi,\text{DC}}} + j \sum_{n} k_{n} \left[\phi_{n} + \frac{3\pi}{2}\right] \right\} \right]. \quad (4.58)$$

Next, we use

$$\exp\left\{j\alpha\right\} + \exp\left\{j\beta\right\} = 2 \ \cos\left(\frac{\alpha - \beta}{2}\right) \ \exp\left\{j \ \frac{\alpha + \beta}{2}\right\}$$
(4.59)

to rewrite this as

3. Optical beamformer: noise performance

analog optical link, multiport

RF component, two-port

Equivalent antenna gain

- antenna patterns
- number of antennas
- amplitude tapering

Noise temperature

- sky noise
- receiver noise (LNB + OBF)

4. Conclusions & future work

Conclusions:

- A novel optical beamformer concept employing a fully integrated, ring resonator-based OBFN and filter-based optical SSB-SC modulation was introduced and partly demonstrated;
- Main advantages of this concept are:
 - low loss and large instantaneous bandwidth;
 - continuous tunability (high resolution);
 - relatively compact and light-weight realization;
 - inherent immunity to EMI;
 - potential for integration with optical distribution network;
- The dynamic range of the phased array receiver system is not significantly reduced by the optical beamformer.

4. Conclusions & future work

Future work:

- Characterize demonstrator chipset;
- Finalize software for control block;
- Build up beamformer demonstrator;
- Integrate with rest of system (array + front-end);
- Scale up demonstrator to >1000 antenna elements.

Acknowledgement

NLR: Jaco Verpoorte Pieter Jorna Adriaan Hulzinga Guus Vos Rene Eveleens Harm Schippers

Cyner Substrates: Marc Wintels Hans van Gemeren UT/TE: Chris Roeloffzen Leimeng Zhuang David Marpaung Bas den Uyl Mark Ruiter Timon Vrijmoeth Jorge Pena Hevilla **Robbin Blokpoel** Tomas Jansen **Roland Meijerink** Jan-Willem van 't Klooster Liang Hong Eduard Bos Wim van Etten

LioniX: Arne Leinse Albert Borreman Marcel Hoekman Douwe Geuzebroek Robert Wijn Rineke Groothengel Melis Jan Gilde René Heideman Hans van den Vlekkert

Questions?

App. A: Phased Array Antenna : single antenna

App. A: Phased Array Antenna: multiple antennas

App. A: Phased Array Antenna: beam steering

App. A: Phased Array <u>Receive</u> Antenna: delays

App. A: Phased array antenna: beamforming network

Challenges:

- Small beam width;
- High gain;
- Low sidelobes;
- Agile steering;
- High bandwidth;
- High resolution;
- Low costs.

- → High number of antenna elements;
- \rightarrow Amplitude tapering;
- \rightarrow Fast tuning;
- \rightarrow True time delays;
- \rightarrow Continuous tunability;
- \rightarrow High integration level.

combiner

to receiver

What?

Microwave Photonics (MWP): [Capmany & Novak, Nature Photonics 2007]

the study of photonic devices

operating at microwave frequencies

and their application to microwave and optical systems

1. Performing microwave functions in optical domain;

RF in \rightarrow E/O \rightarrow optical circuit \rightarrow O/E \rightarrow RF out

2. Control microwave components by means of photonics.

$$RF in \longrightarrow \text{microwave circuit} \longrightarrow RF out$$

$$f photonic control$$

What?

- 1. Signal generation, for instance
 - RF carriers;
 - ultra-short (UWB) pulses;
- 2. Signal transport/distribution, for instance
 - sub-carrier multiplexing (SCM) for CATV distribution;
 - antenna remoting for e.g. RADAR;
 - Radio-over-Fiber distribution in wireless access networks;
- 3. Signal processing, for instance
 - high-frequency filtering;
 - up/down conversion;
 - A/D conversion;
 - beamforming for phased array antennas.

Why?

Inherent advantages of photonics:

- huge bandwidth (~200 THz for optical fiber);
- low-losses (<0.2 dB/km for optical fiber);
- compact & light-weight;
- immune to EMI;
- galvanic separation between blocks
 → no induction, high-voltage protection, common grounding;
- flexible: transparent to signal frequency and format;
- loss & dispersion low over large bandwidth
 → low signal distortion;

Why?

Trends in enabling technologies:

- Advances in components for E/O & O/E conversion: high-frequency directly-modulators lasers, modulators, detectors;
- Advances in photonic integrated circuits:
 - low losses;
 - complex structures;
 - reproducibility;
 - packaging;
 - costs for mass fabrication;
- Other enabling technologies: CMOS, microwave, ...;

Why?

Trends in application areas, a.o. wireless communications:

- Ever higher frequencies (*xx* GHz) and capacities (Gbps);
- Smaller cell sizes \rightarrow high density of access points;
- Increasing complexity (dyn. spectrum all., channel adaptation);
- Increasing demand for flexibility;
- \rightarrow some functions become difficult/impossible in microwave/CMOS;
- \rightarrow desirable to centralize functionality, by means of Radio-over-Fiber;

But: MWP + electronics are not necessarily competitive

 \rightarrow future trend: advancing integration of electronics and photonics (MEMPHIS!)

Challenges:

- Component design (modulators, detectors, photonic ICs):
 - requirements (bandwidth, loss, ...);
 - fabrication technology;
 - packaging/system integration;
- Design of efficient system architectures;
- Performance analysis and improvement (SNR, DR);
- Keep the costs low!

App. C: OBFN measurement setup

Phase-shift method:

$$\tau_{\rm g}(\lambda) = \frac{\varphi_1(\lambda) - \varphi_2(\lambda)}{2\pi f_{\rm RF}}$$

1. Introduction: partners & funding

Project partners:

Agentschap voor duurzaamheid en innovatie

Eureka Initiative for Packaging & Integration of µDevices & Smart Systems

The SMART project is part of the Euripides project SMART (Partners: EADS, CNAM, Radiall, CIMNE, Moyano)