

OBFN activities within Thales Photonic Lab

D. Dolfi, L. Morvan,... Thales Research & Technology – Fr

- J. Chazelas, C. Fourdin, S. Formont,... Thales Systèmes Aéroportés
- T. Merlet,... Thales Air Systems
- M. Maignan, M. Sotom,... Thales Alenia Space

Research & Technology

Introduction

• Early experiment

Recent achievements

- Ultra-Wideband free-space beamforming
- Beamforming for ground radar
- Beamforming for communications

Advanced studies :

- OBFN concepts : adapted LO as an example
- OBFN components :
 - Tunable delays : PBG, SOA
 - Switches : new EO materials
 - Dual-frequency / SSB modulation schemes : DFL

Thales Alenia Space satellite applications

Thales Comm. Mil Com applications

Thales Laser solid state lasers

Thales Netherlands naval applications

Thales Sensors UK naval ESM appli.

Alcatel-Thales 3-5 Lab. optoelectronic components

Thales Aerospace Div.

- RF modules and optical links developments
- Photonic architectures in airborne systems

Thales Air Systems Div

- RF & Digital optical link developments
- Photonic architectures for ground based radars

Thales Research & Techno.

photonic architectures
 optoelectronic processing

•photonic architectures for PAA

Thales@NTU •photonic components Thales Photonics BGs-Corporate Lab.

Research Institutes

• Wideband RF Summation

Thales Photonics Lab.

- Switching matrices
- Photo HBT & mixers
- Dual frequency sources....

0001000.

SMEs

- RF optical modules
- Integrated WDM modules
- Optical waveguides

• ...

Optically controlled phased array antennas **Transmit mode** Microwave signal ()Optical $\left(\right)$ emitter Radiating **High speed** 2D - switching detector array modules for phase and time delay control

THALES

Introduction

• Early experiment

Recent achievements

- Ultra-Wideband free-space beamforming
- Beamforming for ground radar
- Beamforming for communications

• Advanced studies :

- OBFN concepts : adapted LO as an example
- OBFN components :
 - Tunable delays : PBG, SOA
 - Switches : new EO materials
 - Dual-frequency / SSB modulation schemes : DFL

SLM_i : polarization rotation

- Electrically controlled birefringent mode
- p x p pixels
- on channel k: $i(k)=i_0 \cos(2\pi f t + 2\pi e \Delta n(V_k)/\lambda)$ with $\Delta n(V_k)=n(V_k)-n_0$

- N SLMs \Rightarrow 2^N delays
 - each SLM_i : pxp pixels
 - channel k: $i_k(t)=i_0\cos(2\pi f t + 2\pi f \Sigma \varepsilon_{kj} 2^{j-1} \tau)$
 - If reflexion on PBSj $\epsilon_{kj} = 1$
 - Else $\varepsilon_{kj} = 0$

Free-space optical TTD for S band antenna scanning

- delays: 5 bits
- phase control: 6 bits
- 16 channels, 16 radiating elements
- antenna beam pattern:
 - scan angle : ± 20°
 - BW : 2700 3100 MHz
 - no beam squint

9

Introduction

• Early experiment

Recent achievements

- Ultra-Wideband free-space beamforming
- Beamforming for ground radar
- Beamforming for communications

• Advanced studies :

- OBFN concepts : adapted LO as an example
- OBFN components :
 - Tunable delays : PBG, SOA
 - Switches : new EO materials
 - Dual-frequency / SSB modulation schemes : DFL, SSB, FS

Compact True Time Delay module for transmit and receive modes

Amplitude (dB)

input fibres output fibres -5 -10 Amplitude (dB) -15 -20 -25 -30 -35 -40 -5 -10

- 20 cm <
 - BW = 2-20GHz
 - 8 channels, 8 radiating elts
 - unit delay τ =6.5ps
 - 5 SLMs → 32 delays/ch.
 - t_{on}=20ms, t_{off}=100ms

18 GHz

measured far field pattern for:

- scan angle : ± 20°
- frequency : 6 18 GHz
- no beam squint

(11)

Introduction

• Early experiment

Recent achievements

- Ultra-Wideband free-space beamforming
- Beamforming for ground radar
- Beamforming for communications

• Advanced studies :

- OBFN concepts : adapted LO as an example
- OBFN components :
 - Tunable delays : PBG, SOA
 - Switches : new EO materials
 - Dual-frequency / SSB modulation schemes : DFL

Rx Dispersive OBFN principle 🗲

Several OBFN architectures have reached TRL 4 mainly depending on operating bandwidth

Introduction

• Early experiment

Recent achievements

- Ultra-Wideband free-space beamforming
- Beamforming for ground radar
- Beamforming for communications

Advanced studies :

- OBFN concepts : adapted LO as an example
- OBFN components :
 - Tunable delays : PBG, SOA
 - Switches : new EO materials
 - Dual-frequency / SSB modulation schemes : DFL

Within SATn'LIGHT :

- Optically Controlled Antenna demonstrator
- Building blocks overview
 - Dual-Frequency laser
 - Single-polarization Modulator
 - Phase & Amplitude Spatial Light Modulators
 - Optical summation module

Selected antenna concept 📀

Within SAT 'N LIGHT we have selected a FAFR (Focal Array Fed Reflector) Rx antenna as a "study case".

- well-suited for narrow angular coverage for GEO satellite
- based on cheap radiating aperture of a reflector
- many clusters of horns form numerous beams

Ka band, 1 GHz bandwidth, diameter = 1.2 m, focal length = 1 m 170 feeds for 34 beams in Northern Hemisphere

Why to optically steer an active antenna ? 📀

Beam forming is a complex architecture from 170 RF inputs towards 34 outputs with

- ≈ 400 RF amplitude controls
- \approx 400 RF phase controls
- \approx 200 splitters / combiners

Optical architectures lead to drastic weight and volume savings.

Among the 2 classes of optical architectures :

- True Time Delay Beam Steering
- "Coherent" Phase Steering

We have selected the latter approach since it corresponds to the ultimate integration capacity for satellite ¹⁹application

Coherent Optical Controlled Antenna (OCA) estimation* : •Mass < 50 kg •Consumption < 220 W •Volume < 6 liters

* From SAT N LIGHT phase 1

THALES

FAFR implementation of OCA architecture 📀

• Optically Controlled Active antenna (OCA) is a proof of concept demonstrator based on a coherent optical architecture

- Heterodyne LO generation owing to cross-polarised modes in a solidstate cavity. *New concept*
- RF Phase modulation on a single-polarisation New concept
- Parallel 2D matrix for phase and amplitude weightings
- Optical summation and optical Mixing on a single device New concept
- OCA demonstrator is composed of 4 building blocks
 - Dual-Frequency Laser
 - Single-polarization optical modulator
 - Amplitude and phase weighting module
 - Optical Summation module

Coherent architectures are based upon delay coding in the range of 1 optical wavelength (1 $\mu m).$

- For RF phase stability, optical beams shall witness the same variations.
- Beams need to be carried on superposed on the same media

"Single polarization modulator" means :

- A modulator that transmit both polarizations, contrary to usual modulators.
- A modulator that only modulates one of the polarization.

Refer to Photline presentation for detailed explanations

Summation module : manufacturing 🗲

XYZ positioner to adjust optical fibre position before hermetic sealing

THALES

OCA Integrated Demonstrator

Introduction

• Early experiment

Recent achievements

- Ultra-Wideband free-space beamforming
- Beamforming for ground radar
- Beamforming for communications

Advanced studies :

- OBFN concepts : adapted LO as an example
- OBFN components :
 - Tunable delays : PBG, SOA
 - Switches : new EO materials
 - Dual-frequency / SSB modulation schemes : DFL (+SSB Mod, FS : Selex SI)

THALES

- microwave signals spread over a large dynamic range (up to 100 dB)
- frequency bandwidth from <10% (radar, comm) up to 2-18 GHz (E.W)
- in-phase addition over a large frequency BW of the received signals with a precision of few degrees
 - need of pxp analog microwave / optical links with large dynamic range and low noise figure
 - → limited dynamic range of opto-links (typ. 90-95 dB in 1 MHz BW)

architecture with matched local oscillator (time-delayed and optically carried)

THALES

- optical carriers of the transmitted signal and of the L.O
 - with crossed polarizations
 - at different wavelengths
- complementary time delays on each channel i :
 - τ_{max} - τ_i for the matched L.O
 - τ_i for the transmitted signal

on channel j :

- transmitted signal : cos [$2\pi f_{tr} (t \tau_j)$]
- local oscillator : $\cos [2\pi f_{LO}(t (\tau_{max} \tau_j))]$
- received signal : $\cos [2\pi f_r (t T + \tau_j)]$

tr.

• intermediate frequency
$$f_i$$
 signal :
• $\cos \left[2\pi \left(f_{LO} - f_r \right) t + 2\pi \left(f_{LO} - f_r \right) \tau_j - 2\pi f_{LO} \tau_{max} + 2\pi f_r T \right]$

in-phase addition of the signals at f_I when 2π (f_{LO} - f_r) τ_j << phase quantization

THALES

Two channel architecture with:

- f = 2.8 GHz
- I.F= 700 MHz

I.F signal for time delay $\tau = 450$ ps between the channels

→in phase I.F signals →residual errors $\Delta \tau < 10 \text{ ps}, \Delta \phi \sim 5^{\circ}$

Transmission and optical processing of RF signals

- dispersive fibre (photonic crystal)

¹Need of variable delay lines for basic processing functions:

- beam control of phased array antennas, programmable filtering
- spectral analysis of large BW microwave signals
- radar phase conjugation
- → analog optoelectronic link

33

→ the signal of interest is the microwave modulation itself, not the envelope

* D. Pastor *et al.,* Electron. Lett., 34, 1684, 1998** S. Combrié *et al.*, Electron. Lett., 42, 86, 2006*** J. Mørk et al., Optics Express., 13, 20, 2005

Measurement of the time delays generated with a SOA (

- Time delay from 4 to 45 ps
- Bandwidth : more than 10 GHz
- "Slowlight" with a factor from 2 to 20
- Index variation : few 10^{-3} (through L=750 μ m)

THALES

*VNA: vectorial network analyzer

→ each channel will carry the time delay that it would have carried with the same value of P_{in}/P_{sat}
THALES

→ Require stabilization for radar applications

Optical Phase-Locked Loop (OPLL) stabilization (©)

DFL stabilization with an Optical Phase-Locked-Loop

THALES

<u>(OPL</u>

Stabilization combining two delays

Phase noise of the stabilized beatnote : 1000 + 100 meters long fibers

→ both low and high frequency phase noise are reduced, detection + electronic noises are still limiting

- Theoretical limit is fixed by the shot noise level at detection and the amount of delay :
- Low noise, widely tunable, high frequency oscillators for radar applications

$$S_{\varphi} = \frac{2e}{I_{phot}\pi^2 \tau^2 f^2}, \quad f \ll 1/\tau$$

-150 dBrad?/Hz @10 kHz (1 km long fiber and 10 mA photocurrent I_{phot} THALES

• Optical technology offers :

- Potential for reducing mass and volume (e.g. the good performance of optical fiber as transmission medium regarding weight, volume and loss can implement compact optically-based TTD beamforming structures).
- Antenna remoting
- Advance functionality (processing of different types of signals, wideband, multibeam, reconfigurable)
- Different approaches to optical beamforming that can be combined to perform the most suitable optical architecture regarding the application targeted

• New approaches for time delay implementation under studies will offer in the future a higher level of integration

