European Space Research & Development

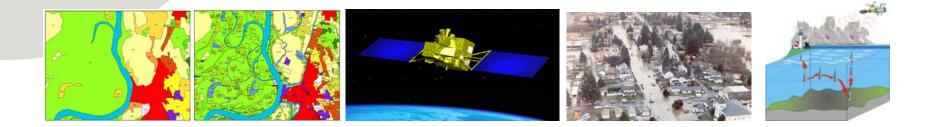
### FP7-Space: R&D activities in support of European microelectronics enabling technologies

**Richard Gilmore** 

**Space Research and Development Unit** 



**European Commission** Enterprise and Industry


#### Contents

- Space research in the Framework Programme, brief history (contribution to microelectronics research)
- Work of the Joint Task Force on Critical Technologies
- Initial results for critical technologies, electronics components
- Future work



European Space Research & Development

# Space research in the Framework Programme, brief history





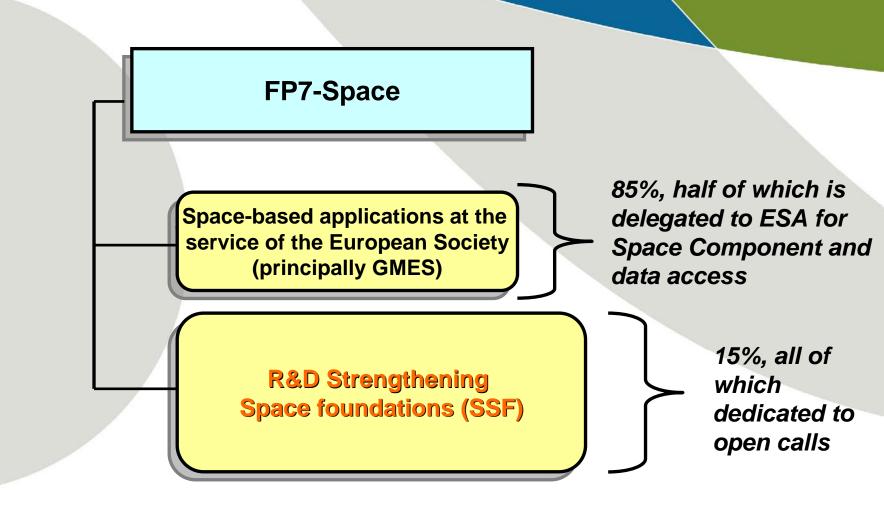
## "Space" in the EU Research Framework Programmes

Space a **new activity**, first introduced in the 6th Framework Programme under the Aeronautics & Space theme - FP6 (2002-2006):

- > About € 230 million over five years.
- > Earth observation (GMES), Satcom, Satnav
- Focused on applications and services
- With own Space theme in FP7 (2007 2013)
  - > About  $\in$  1.4 billion over 7 years
  - GMES + Strengthening Space Foundations
  - > Services, but also technology development

Post 2013:

See later…




# **Framework Programme 7**

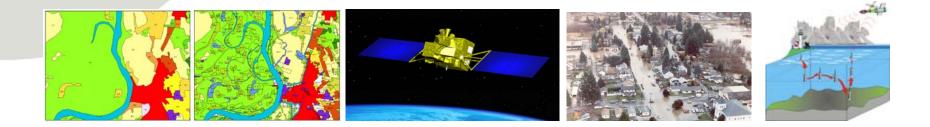
|                   |             | Health                                                                             | IDEAS                                            | European Research Council                    |  |
|-------------------|-------------|------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|--|
|                   | COOPERATION | Food, Agriculture and<br>Fisheries, and<br>Biotechnology                           |                                                  | Initial training                             |  |
|                   |             |                                                                                    |                                                  | Life-long training                           |  |
|                   |             | Information and<br>communication<br>technologies                                   | PEOPLE                                           | Industry-academia                            |  |
|                   |             |                                                                                    |                                                  | International dimension                      |  |
|                   |             | Nanosciences,<br>nanotechnologies,<br>materials and new<br>production technologies |                                                  | Specific actions                             |  |
|                   |             |                                                                                    | Research infrastructures                         |                                              |  |
|                   |             | Energy                                                                             |                                                  | Research for the benefit of<br>SMEs          |  |
|                   |             |                                                                                    | CAPACITIES                                       | Regions of Knowledge                         |  |
|                   |             | Environment (including<br>climate change)                                          |                                                  | Research potential                           |  |
|                   |             |                                                                                    |                                                  | Science in society                           |  |
|                   |             | Transport (including<br>aeronautics)                                               |                                                  | Coherent development of<br>research policies |  |
| ~                 |             |                                                                                    |                                                  | International co-operation                   |  |
| Space<br>€1.4 bn. |             | Socio-economic sciences<br>and the humanities                                      |                                                  |                                              |  |
|                   |             | Security                                                                           | Non-nuclear actions by the Joint Research Centre |                                              |  |
|                   |             | Space                                                                              |                                                  |                                              |  |



€






# Strengthening Space Foundations (SSF): Main topics addressed

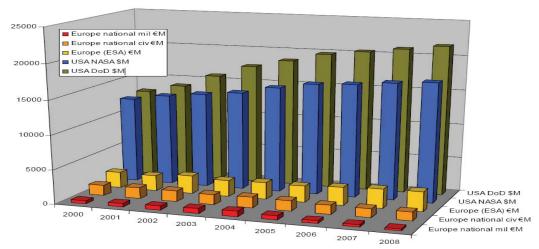
- Space science (exploitation of scientific data)
- Space transportation (in-space propulsion, launch, entry)
- Planetary exploration (robotics, sample return)
- Space situational awareness (space debris, space weather, NEOs)
- Key space technologies, "critical technologies for European non-dependence" (electronics...), <u>about €10 million/year</u>



European Space Research & Development

# Work of the EC-ESA-EDA Joint Task Force on Critical Technologies






## **The Issue**

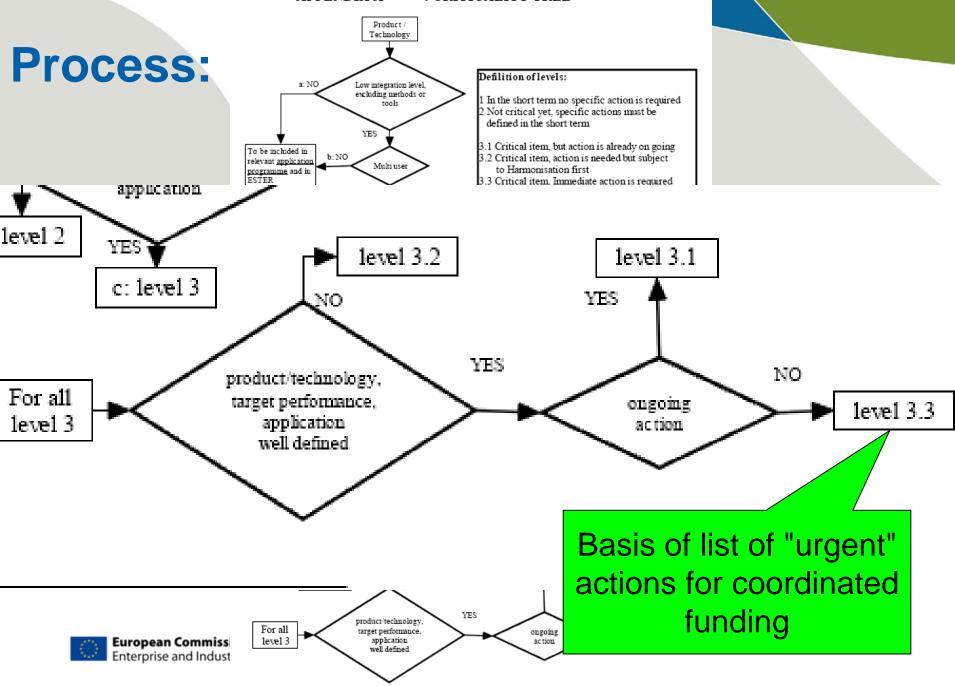
#### **Technology Gap**

- Europe is 5 years behind in a number of technologies, e.g. in microelectronics
- Our market is too small
- Thus, dependence on imports (associated restrictions)
- Long term availability is not guaranteed

### **Funding Gap**






### Joint Task Force Mandate/Recommendations

2008 Workshop in Brussels: EC, ESA and EDA decides to join forces to address critical space technology research:

- Raise awareness on this strategic issue for Europe,
- Define an agreed common methodology for a coherent Europe-wide approach, building on the existing and recognised processes, such as the ESA led European Space Technology Harmonisation process (THAG),
- Define a common list of priorities for critical space technologies
- Identify a list of critical items for which immediate action is required (for review every 2 years)



#### APPENDIX A : CRITICALITY TREE





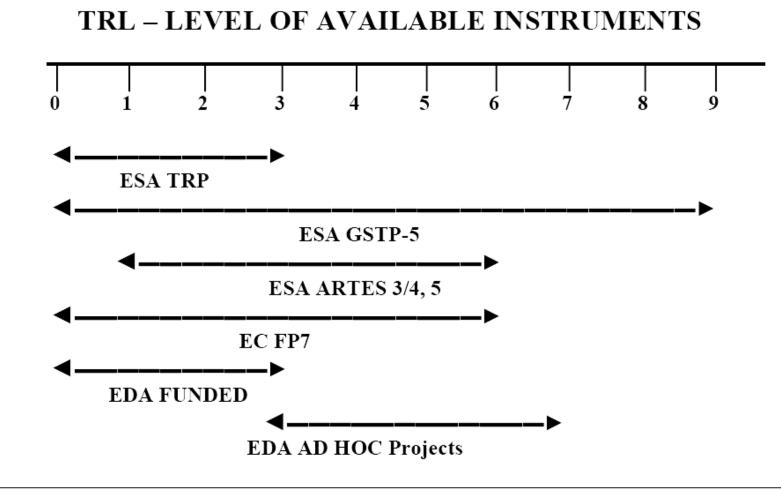



Figure 2 Funding instruments and their TRL-levels

# List of 25 « critical items » for which immediate action is required

| ID | Title                                                                                                 |
|----|-------------------------------------------------------------------------------------------------------|
| 1  | Core processors for DSP computers                                                                     |
| 2  | ASICS                                                                                                 |
| 3  | High speed DAC-ADC based on European Technology                                                       |
| 4  | Very high speed serial interfaces                                                                     |
| 5  | FPGAs                                                                                                 |
| 6  | Solid state gyroscope components                                                                      |
| 7  | Power amplification: TWT materials                                                                    |
| 8  | European State of the Art Dielectric Materials                                                        |
| 9  | Make available Submmw Local Oscillator Sources                                                        |
| 10 | Space-worthy solid-state laser sources                                                                |
| 11 | Enhanced performance, space-worthy 1-D + 2-D sensor focal planes operating from X-ray to the Infrared |
| 12 | Bladder tanks for bipropellants                                                                       |
| 13 | Propellant flow and distribution components for electric and chemical propulsion                      |
| 14 | Development of Large Deployable structures                                                            |
| 15 | Development of low shock (NEA-like) initiators                                                        |
| 16 | Advanced Ablative Systems for high speed re-entry                                                     |
| 17 | Passive Components                                                                                    |
| 18 | Active Components                                                                                     |
| 19 | Very High performance microprocessors                                                                 |
| 20 | Advanced microwave components - MMIC                                                                  |
| 21 | Low-cost high-resolution L and X-band SAR components                                                  |
| 22 | Advanced thermal control systems                                                                      |
| 23 | Advanced thermal control materials                                                                    |
| 24 | High density (up to 1000 pins) assemblies on PCB                                                      |
| 25 | Space qualified carbon fibre and pre impregnated material sources for satellite subsystems            |

European Space Research & Development

# Initial results for critical technologies in FP7 (especially microelectronics)





# FP7-Space, state of play for SSF topics (after Calls 1, 2 and 3)

- Very significant interest for all SSF topics (3 to 6 fold oversubscription rates)
- Portfolio of some 120 projects
- About 66 projects under SSF topics
- Main topic groupings:
  - Space science data exploitation (9)
  - Human space exploration (2)
  - Robotics for planetary exploration (4)
  - Space transportation technol. (12)
  - International coop. with Russia (6)
  - Space weather/debris (15)

#### - Critical technol. (13)



#### FP7 Space: projects funded unex critical technologies topic

| Call | Coordinator                  | Acronym  | Title                                                                        |
|------|------------------------------|----------|------------------------------------------------------------------------------|
| 1    | ThalesAleniaSpace            | AGAPAC   | Advanced GaN Packaging                                                       |
|      | France                       |          |                                                                              |
| 2    | E2V Semiconductors SAS,      | COMETS   | Converters broadband low power high performance for telecommunications in    |
|      | France                       |          | space                                                                        |
| 2    | SiCrystal AG,                | EuSiC    | High Quality European GaN-Wafer on SiC Substrates                            |
|      | Germany                      |          |                                                                              |
| 2    | Science and Technology       | MIDAS    | Millimetre-wave Integrated Diode and Amplifier Sources                       |
|      | Facilities Council, UK       |          |                                                                              |
| 2    | Thales Research and          | SATURNE  | Microsystems Based on Wide Band Gap Materials for Future Space               |
|      | Technology, France           |          | Transmitting Ultra Wideband Receiving Systems                                |
| 2    | Chalmers University of       | TeraComp | Terahertz heterodyne receiver components for future European space missions  |
|      | Technology, Sweden           |          |                                                                              |
| 3    | Commissariat à l'Energie     | CESAR    | Cryogenic Electronics for Space Applications and Research                    |
|      | Atomique, France             |          | Cryogenie Electronies for Space Applications and Research                    |
| 3    | Caen Arelia Space Srl,       | DSPACE   | Digital Signal Processor for Space Applications                              |
|      | Italy                        |          |                                                                              |
| 3    | Helsingin Yliopisto, Finland | E-SQUID  | Development of SQUID-based multiplexers for large Infrared-to-X-ray          |
|      |                              |          | imaging detector arrays in astronomical research from space                  |
| 3    | Austrian Institute of        | HARMLES  | Dry lubricated Harmonic Drives for space applications                        |
|      | Technology                   |          |                                                                              |
| 3    | Universidad Carlos III,      | MAGDRIVE | Magnetic-Superconductor Cryogenic Non-contact Harmonic Drive                 |
|      | Madrid, Spain                |          | Magnetic Superconductor oryogenic from condict mannonic Drive                |
| 3    | Fundacion Insmet,            | SMARTEES | Multifunctional components for aggressive environments in space applications |
|      | Spain                        |          |                                                                              |
| 3    | Heinrich-Heine-Universitaet, | SOC2     | Towards Neutral-atom Space Optical Clocks: Development of high-              |
|      | Duesseldorf, Germany         |          | performance transportable and breadboard optical clocks and advanced         |
|      |                              |          | subsystems                                                                   |
| 4    | -                            | -        | Carbon Fibres and Pre-Impregnated Materials                                  |
| 4    | -                            | -        | Re-entry ablative thermal protection                                         |
| 4    | -                            | -        | Large Deployable Technologies                                                |
| 4    | -                            | -        | Miniaturized Flow Control                                                    |
| 4    | -                            | -        | CMOS Imagers                                                                 |
| 4    | -                            | -        | Aerogels for Space Applications                                              |
| 4    | -                            | -        | Very High Speed Serial Interfaces                                            |



# List of 25 « critical items » for which immediate action is required

| ID | Title                                                                                                 |                     |  |  |  |
|----|-------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| 1  | Core processors for DSP computers                                                                     | Calls 1, 2 and $3$  |  |  |  |
| 2  | ASICS                                                                                                 | Calls I, Z allu J – |  |  |  |
| 3  | High speed DAC-ADC based on European Technology                                                       |                     |  |  |  |
| 4  | Very high speed serial interfaces                                                                     | Call 4              |  |  |  |
| 5  | FPGAs                                                                                                 |                     |  |  |  |
| 6  | Solid state gyroscope components                                                                      |                     |  |  |  |
| 7  | Power amplification: TWT materials                                                                    |                     |  |  |  |
| 8  | European State of the Art Dielectric Materials                                                        |                     |  |  |  |
| 9  | Make available Submmw Local Oscillator Sources                                                        |                     |  |  |  |
| 10 | Space-worthy solid-state laser sources                                                                |                     |  |  |  |
| 11 | Enhanced performance, space-worthy 1-D + 2-D sensor focal planes operating from X-ray to the Infrared |                     |  |  |  |
| 12 | Bladder tanks for bipropellants                                                                       |                     |  |  |  |
| 13 | Propellant flow and distribution components for electric and chemical propulsion                      |                     |  |  |  |
| 14 | Development of Large Deployable structures                                                            |                     |  |  |  |
| 15 | Development of low shock (NEA-like) initiators                                                        |                     |  |  |  |
| 16 | Advanced Ablative Systems for high speed re-entry                                                     |                     |  |  |  |
| 17 | Passive Components                                                                                    |                     |  |  |  |
| 18 | Active Components                                                                                     |                     |  |  |  |
| 19 | Very High performance microprocessors                                                                 |                     |  |  |  |
| 20 | Advanced microwave components - MMIC                                                                  |                     |  |  |  |
| 21 | Low-cost high-resolution L and X-band SAR components                                                  |                     |  |  |  |
| 22 | Advanced thermal control systems                                                                      |                     |  |  |  |
| 23 | Advanced thermal control materials                                                                    |                     |  |  |  |
| 24 | High density (up to 1000 pins) assemblies on PCB                                                      |                     |  |  |  |
| 25 | Space qualified carbon fibre and pre impregnated material sources for satellite subsystems            |                     |  |  |  |

#### **GaN-based technologies**

GaN has emerged as the technology of choice for the next generation of high-power electronics

#### • <u>AGAPAC (Coord.: ThalesAleniaSpace, FR)</u>:

Develop a space-compliant power micropackage to dissipate up to 100 W, based on innovative high thermal conductivity diamond or nanocomposites

• EuSiC (Coord.: SiCrystal AG, DE): Develop SiC high-quality 3-inch substrate for GaN.



#### **High-frequency Schottky diodes**

Terahertz receivers are essential for scientific exploration and Earth observation

 <u>TeraComp (Coord.: Chalmers University of</u> <u>Technology, SE)</u>:

Development of a European industrial capability for terahertz receivers based on Schottky diodes (novel Heterostructure Barrier Varactor and mHEMT MMIC)

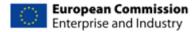
 MIDAS (Science and Technology Facilities Council, UK):

Development of a demonstrator source delivering enough power at 300 GHz for direct commercial applications (builds on European amplifier technology, Schottky varactor diodes)



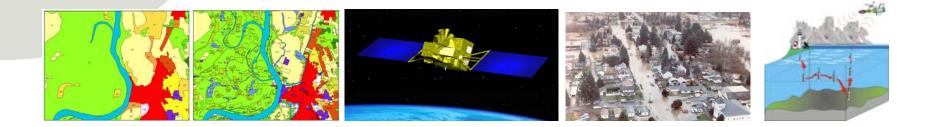
#### Wide bandgap semiconductors Flexible RF front ends for versatile satellites

#### SATURNE (Thales SA, FR):


Realise novel types of microwave functions through Wide Band Gap semiconductors and RF-MEMS switches. Develop re-configurable, highly powerefficient communication payloads with narrow-, multior wide-band channel allocation.



## Further information available: ec.europa.eu/embrace-space




FP7 "Let's Embrace Space" conference, 12-13 May, Budapest, Hungary



#### European Space Research & Development

#### **Future work**





## **Next steps**

- Take stock of results of the first 4 calls of FP7-Space (topic will not be open in Call 5)
- Review list of urgent actions based on these results

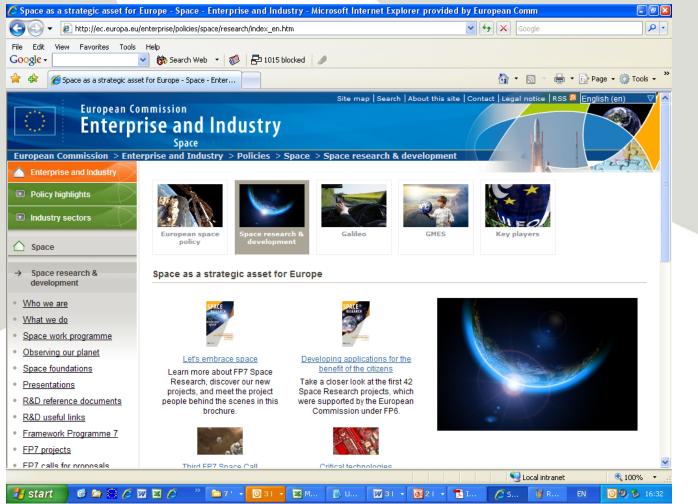





Figure 1 European Non-Dependence Process in 2011

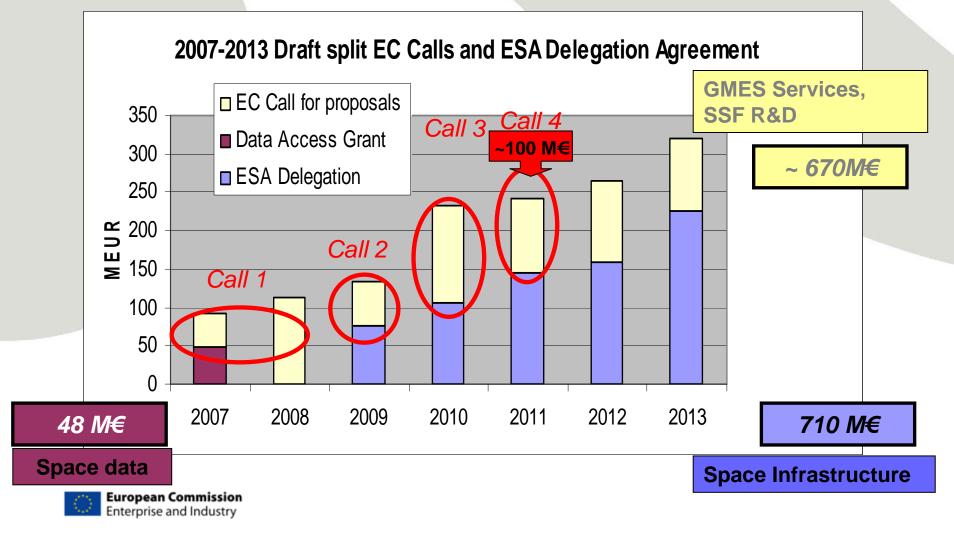


#### More information: ec.europa.eu/embrace-space





European Commission Enterprise and Industry


# Thank you for your attention

Richard Gilmore
Space Research and Development Unit

#### richard.gilmore@ec.europa.eu



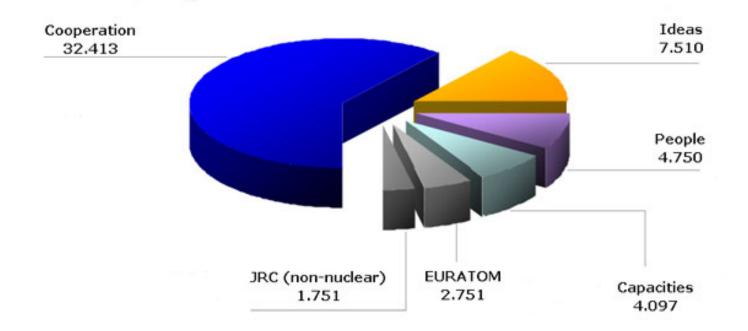
# **Breakdown of FP7 Space funding**



#### **Commission Green Paper**

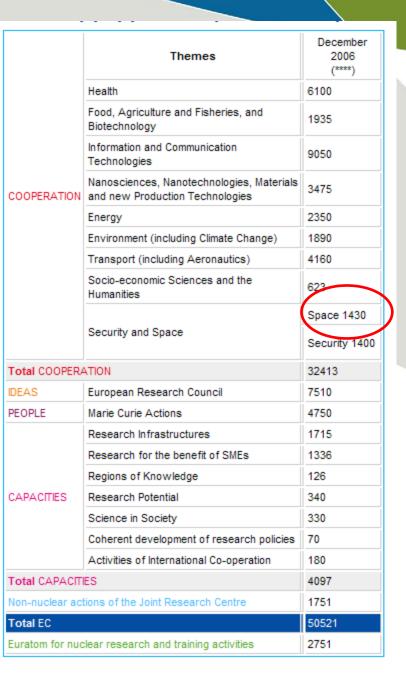
- On 9 February 2011, the Commission adopted a Green Paper 'From Challenges to Opportunities: Towards a Common Strategic Framework for EU research and innovation funding' (COM(2011)48).
- This Green Paper launches a public consultation on the key issues to be taken into account for future EU research and innovation funding programmes.
- The consultation website is available at: <u>http://ec.europa.eu/research/csfri/index\_en.cfm</u>.
  Submissions can be made until 20 May 2011 in form of questionnaire or position papers.




## Those topics closed for this can nom the "list of urgent actions" are barred

| ID  | Title                                                                                             |
|-----|---------------------------------------------------------------------------------------------------|
| 1*  | Core processors for DSP computers                                                                 |
| 2   | ASICS                                                                                             |
| 3*  | High speed DAC ADC based on European Technology                                                   |
| 4   | Very high speed serial interfaces                                                                 |
| 5*  | FPGAs                                                                                             |
| 6   | Solid state gyroscope components                                                                  |
| 7   | Power amplification: TWT materials                                                                |
| 8   | European State of the Art Dielectric Materials                                                    |
| 9*  | Make available Submmw Local Oscillator Sources                                                    |
| 10  | Space-worthy solid-state laser sources                                                            |
| 11  | Enhanced performance and space-worthy 1-D and 2-D Sensor focal planes operating from X-ray to the |
| 11  | Infrared                                                                                          |
| 12  | Bladder tanks for bipropellants                                                                   |
| 13  | Propellant flow and distribution components for electric and chemical propulsion                  |
| 14  | Development of Large Deployable structures                                                        |
| 15  | Development of low shock (NEA-like) initiators                                                    |
| 16  | Advanced Ablative Systems for high speed re-entry                                                 |
| 17  | Passive Components                                                                                |
| 18  | Active Components                                                                                 |
| 19  | Very High performance microprocessors                                                             |
| 20* | Advanced microwave components - MMIC                                                              |
| 21  | Low-cost high-resolution L and X-band SAR components                                              |
| 22  | Advanced thermal control systems                                                                  |
| 23  | Advanced thermal control materials                                                                |
| 24  | High density (up to 1000 pins) assemblies on PCB                                                  |
| 25  | Space qualified carbon fibre and pre impregnated material sources for satellite subsystems        |




### **Framework Programme 7**

#### F7 Budget (in Mio. EUR)





# **FP7 budget**





# Main characteristics of research funding under FP7

#### General approach:

- Complementary to ESA research programmes (address gaps, target topics for which FP can bring added value, coordination to avoid duplication)
- Bottom-up approach: relatively broad definition of research topics to be addressed
- Competitive selection based on evaluation by external experts (no geo-return constraints)
- Most FP7 research projects are 50% co-funded
- Overall budgets are set from beginning of the FP



# Framework Programme (FP)

- European Union's main financial tool to support research and development activities in almost all scientific disciplines
- Initiated in 1984
- 5-year cycles (up to FP6)
- Current incarnation: FP7. Period of seven years (2007 – 2013), to be synchronised with the EC's Multiannual Financial Framework (MFF)
- FPs are proposed by the European Commission and adopted by Council and the European Parliament following a co-decision procedure
- Now starting to prepare for the next MFF and therefore "FP8"...



# **Beyond FP7 (2 calls remaining)**

Working assumptions:

- Lisbon Treaty means that space should remain a priority for the EU and the FP
- Budget should be similar to that of FP7, but GMES to move out of the FP
- Majority of budget therefore for SSF-type topics
- However, financial crisis...

First preparations:

- Commission Green Paper
- FP8 space research hearing, December 2010
- Input from the FP7 Space Advisory Group



#### **JTF Recommendations**

- For the <u>transitory phase</u> until more focused instruments are in place:
- to use the first common list of critical technologies for European Strategic Non-Dependence as input for the work programmes of all the three institutions
- to launch the European Non-Dependence Process in 2nd semester 2009
- to review and update the Non-Dependence List every 2 years and monitor its status on a regular basis
- ➤ to make adequate and complementary funds available for critical technologies activities (approximately 100-120 M€year).
- for the three Institutions to make best use of the available instruments until more dedicated programmatic instruments are set up



### **Proposed Common Methodology**

- Build on the existing and recognized European Space Technology Harmonisation process of ESA and
- the Synchronised Programming Approach of EDA
- Expand the Technology Harmonisation Advisory Group (THAG) to EC and EDA
- Proceed to calls on the basis of the joint list



|                                                                                                                                                                                                                               | 2011<br>EUR<br>million <sup>53</sup> | total |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|---|
| Call FP7-SPACE-2011-1<br><u>Activity 9.1</u> Space-based applications at the service of European<br>Society :                                                                                                                 | 1                                    |       |   |
| 1.1 GMES Security: exploring governance options<br>5.1 Marine service                                                                                                                                                         | 28                                   | 56    |   |
| 5.2 Atmosphere service                                                                                                                                                                                                        |                                      |       |   |
| 5.3 R&D to enhance future GMES applications in the Marine<br>and Atmosphere areas                                                                                                                                             | 19                                   |       |   |
| and Annosphere areas                                                                                                                                                                                                          | 8                                    |       |   |
| Call FP7-SPACE-2011-1<br><u>Activity 9.2</u> Strengthening of Space foundations:<br>1.1 Exploitation of Space Science and exploration data<br>1.2 Developments for space exploration<br>2.1 Space Transportation technologies | 17                                   |       |   |
| Call FP7-SPACE-2011-1<br><u>Activity 9.2</u> Strengthening of Space foundations:<br>2.2 Space Critical Technologies                                                                                                           | 10                                   |       |   |
| Call FP7-SPACE-2011-1<br>Activity 9.2 Strengthening of Space foundations:<br>3.1 Prevention of impacts from NEO                                                                                                               | 4                                    |       |   |
| Call FP7-SPACE-2011-1<br>Activity 9.3 Cross- cutting activities/International Cooperation<br>2.1. Support for "GMES and Africa" Initiative                                                                                    | 1                                    |       |   |
| 2.2. Facilitating access to space for small scale R&D missions                                                                                                                                                                | 8                                    | 12    |   |
| Call FP7-SPACE-2011-1<br><u>Activity 9.3</u> Cross-cutting activities<br>3.1. Trans-national and international coop. among NCPs<br>5.1. Studies and Events in support of European Space Policy                                | 3                                    |       |   |
|                                                                                                                                                                                                                               |                                      |       | ļ |

