

Technology needs for new computer developments at RUAG Space

15 March 2011

Torbjörn Hult

What is an SMU?

- Spacecraft Management Unit (SMU) tasks
 - Ground protocol handler, Telecommand and Telemetry
 - Processing capability and application program interface
 - Timing and synchronisation management
 - Mass memory (platform memory or small science data memory)
 - Discrete I/O interfaces (standard I/O, AOCS, propulsion)
 - Fault Detection, Isolation and Recovery (FDIR) to supervise and manage the processing function

The SMU location in the spacecraft

Computer technologies in use

- Basic key technologies for current computer generation
 - Rad hard ASIC technology with 0.35 and 0.18 µ feature size
 - Mixed ASIC technology 0.35µ and larger
 - PROM, EEPROM, SRAM, SDRAM and Flash memories
 - Analog multiplexers
 - FET transistors of various sizes
 - XO, TCXO and sometimes OCXO
 - Interface circuits for RS-422, LVDS, 1553 and sometimes RS-485
 - Printed circuit boards with dual-sided mounting and up to 18 layers using buried via holes
 - HDD and MDM type external connectors

Typical processor board

Problem areas

- For "discrete" ICs, packages from the 70-ies still used
 - 1 mm² chip becomes 200 mm² board area
- Rising vibration and shock requirements
- ECSS standardisation efforts not always reflected in available technology:
 - SpaceWire: No European LVDS supplier
 - Discrete I/F: No European RS-422 I/F supplier
 - CAN: Old RS-485 technology still used
 - 1553: European alternatives exist, but with problems

Problem areas cont'd

- No European low cost ASIC capability
- No European PROM capability
- Paper administration when using "new" technology
- Non-standardised functionality prevents investments in new technology
- Short technology lifetime is not compatible with end customer needs for qualified products
- Is the space industry even losing its position as leaders in trailing edge technology ?

Current trends

- Single source is becoming more common
- European supply of complex functions like ASICs and FPGAs is fading
- Commercial evolution towards lead-free processes affects parts availability and drives process development
- Or is this just extending the problem list ?

Package pin count evolution

ESCCON 2011

ESCCON 2011

How to meet future challenges

I Lower mass and power

Higher performance

Increased functionality

Developments

- More integrated ASICs
- Work with 3D stacking technology
- Work on methods to solve the repair problem
- Prepare for multi-core CPU
- Fast communication link architectures
- More integrated ASICs
- Flexible IP blocks
- Support standardisation activities

Investments needed at design house level

- Solve the problem areas, e.g. reliable non-volatile storage
- Master new Deep Submicron technology
 - Design process
 - Fault models and reliability
- Master "rad-hard by design" techniques
- Master spin-in of commercial technology
 - Opportunistic process since we cannot influence the development
- Master more compact packaging

Thank you for your attention!