

The way to future power management

Michel Mélotte

THALES

All rights reserved © 2011, Thales Alenia Space

Thales Alenia Space ETCA

Outline - Introduction

Objective:

Discuss trends in components fields for future space power system

Evolution for the next 5 years . . .

Remarks:

- Power supply are ubiquitous . . .
- Power supply are very often "mission critical"
- Power supply are considered like a "constraint"

Looking to industrial business can be a source of inspiration

- This field is bourgeoning with innovative solutions
 - improve performances and costs

Lets try to imagine the future power supply ...

... But do not forget the constraints

Ref : ESCCON 2011. Date : 15 March 2011.

THALES

The main space constraints

Mechanical constraints

- Vibrations and shocks during launch
- Weight constraint on structure

Thermal constraints

We are in the vacuum of space . . . No air for cooling

Reliability constraints

- 15 to 18 years of mission life time High availability
- No maintenance possible . . . No failure accepted (at system level)
- Reliability and failure mechanisms must be under control

Ionising radiations constraints

- Degradation of physical and electrical parameters
- Corruption of data inside electronic systems ! Availability impact !
- Use of hardened components is mandatory

Thales Alenia Space ETCA

Ref : ESCCON 2011. Date : 15 March 2011.

Basic components ThalesAlenia A Thales / Finmeccanica Company Space **Radiations Passive** e⁻ components **Substrate** Packaging Active & Thermal components Communication Clock Sensors

Low level control

Ref : ESCCON 2011. Date : 15 March 2011.

Today, Si based power MOSFET are the unquestionable leader

Looking to industrial market the new device developments are oriented toward WBG (Wide Band Gap)

- Especially GaN for power electronics
 - Push by the electrical vehicle business
 - Push by supply for server business
 - Push by renewable energies
 - Why not by space business ?

THALES All rights reserved © 2011, Thales Alenia Space

Ref : ESCCON 2011. Date : 15 March 2011.

Thales Alenia Space ETCA

5

Switches

Why GaN ?

- Baliga Factor of Merit
 - BFOM = $\epsilon \mu E_c^3$

Material	Eg (eV)	Es	μ_n (cm ² /Vs)	E _c (MV/cm)	v _{sat} (10 ⁷ cm/s)	n _i (cm ⁻³)	BFOM*
Si	1.12	11.8	1350	0.3	1.0	1.5×10^{10}	1
GaAs	1.42	13:1	8500	0.4	2.0	1.8×10^{6}	17
4H-SiC	3.26	10	720	2.0	2.0	8.2x10 ⁻⁹	134
6H-SiC	2.86	9.7	370	2.4	2.0	2.4×10^{-5}	115
2H-GaN	3.44	9.5	900	3.0	2.5	1.0×10^{-10}	537

 E_g , bandgap; ε_s , dielectric constant; μ_n , electron mobility; E_c , critical electric field; v_{sat} , saturation velocity; n_i , intrinsic carrier density.

*BM= $\epsilon \mu E_c^3$, BFOM was normalized by the BM of Si.

_____Electrical Properties of Wide Bandgap Semiconductors Compared With Si and GaAs

GaN advantages

- Expected improvement 3 to 4 orders of magnitude for Ron.S
- Breakdown voltage BV about 10 times higher
- Robustness (overdrive and radiation)
- GaN Unipolar devices (HEMT) with high voltage and high frequency operation (x10 vs. Si)
 - Higher Efficiency
 - Compacter modules
 - Lighter modules

Thales Alenia Space ETCA

Switches

Challenges

- Normally-off devices
 - Needed for correct failure mode management
- High reliability
 - New devices
- Modelling and design
 - New topologies ? !
- Thermal Management and packaging
 - Use of flip-chip ? !
- GaN on Si substrate (for low cost)
 - Not really needed for space ! ?
- Other components "GaN Ready"
 - See here after . . .

Fig. 10. (a) bottom view of QFN-style package showing board connections. (b) cross-section through plated bump.

Fig. 11. (left) top view of die. (right) SEM views of plated bump connections.

Thales Alenia Space ETCA

GaN devices already exist ... (not exhaustive)

- USA:
 - International Rectifier (AIGaN/GaN HFETs on Si)
 - EPC (Efficient Power Conversion corp.) (AIGaN/GaN HFETs on Si)
 - • •
- Japan:
 - Sanken Electric co, (20mΩ, 750V, high power, AlGaN/GaN HFETs on Si)
 - Furukawa Electric co, (GaN power transistor, on Si, on Sapphire)
 - Toyota Central R&D Labs inc. (vertical structures with p-type GaN)
 - Sharp (AlGaN/GaN recessed MISgate HFET for power)
 - Panasonic (AIGaN/GaN HFETs on Sapphire)
 - Toshiba (AlGaN/GaN HFETs on SiC or Sapphire)
 - • •

Date : 15 March 2011.

GaN devices already exist ... (not exhaustive)

- Europe:
 - IMEC (Interuniversity Micro Electronics Center, Leuven)
 - AIGaN/GaN/AIGaN double hetero struct HFET on Si substrate
 - Ferdinand BRAUN Institute (Berlin) & TESAT Spacecom (Backnang)
 - p-type GaN gate in AIGaN/GaN/AIGaN structure
 - Fraunhoffer Institute (Freiburg)
 - AIGaN/GaN HEMT Id 50A BV 600V (power, only normally on!)
 - LAAS/ CNRS-CRHEA (projet MOreGaN)
 - Alcatel-Lucent Leti Thales III-V lab
 - Work today on RF normally_on GaN
 - • • •
 - Remark: Today, main activities are done in laboratories. We have to look for an industrial supply chain !!!

Inductors

Switching at higher frequency require new ferrite materials

- Merit factor: f x B_{max}
 - Frequency x maximum magnetic flux density
- B.f product of different magnetic materials assuming a maximum value of 500 mW/cm³ for core losses (source Ferroxcube)

Thales Alenia Space ETCA

Inductors

Low core losses at high frequency

- New material developed by TRT
 - NiZnCuCo
 - Can be co-sintered . . .
 - Thales Research & Technology

Ferrite	permeability	Core losses at 3 MHz – 12.5 mT
3F4	900	> 300 mW/cm ³
3F45	900	≈ 235 mW/cm³
3F5	650	> 200 mW/cm ³
4F1	80	< 300 mW/cm ³
TRT ferrites	80 to 500	< 100 mW/cm ³

Measured at 37.5 MHz.mT

Best power ferrites at high frequency = NiZnCuCo ferrites

Look out : do not forget skin effect in winding !

Thales Alenia Space ETCA

Ref : ESCCON 2011. Date : 15 March 2011.

High frequency capacitor exist

Ad hoc dielectric materials are known and used for RF components (like NPO)

But . . .

- Range of values is limited to 100 pF . . . 100 nF
 - Large size => parasitic inductance
- Look out for power losses induced by high current

Solutions

- Use of HF capacitor only in the "converter loop"
- Use of capacitor assemblies
 - With various dielectric materials
 - For wide bandwidth

Drawback

Cost !

Industrial converter goes to the digital world . . .

... Why not the for space applications ?

- A high-growth domain for the past five years on ground
 - 45% growth predicted by 2013 (Darnell Feb. 2009)

Objectives of the controller:

- Management of power devices via digital rather than analogue techniques
- Brings about flexibility and cost reductions

But space constraints must be taken into account ...

- Radiations
- Reliability and availability

CLOCK OSCILLATOR AND SCALER

 14
 Thales Alenia Space ETCA

Ref : ESCCON 2011. Date : 15 March 2011. A BIT OF POWER digitally controlled power conversion JULY 21, 2005 | **EDN** 59-66 BY JOSHUA ISRAELSOHN • TECHNICAL EDITOR

Controllers

As it is done today on ground digital controllers, around basic regulation we can easily add:

- Non-linear regulation (fast transient suppression)
- Temperature drifts compensation
- Double regulation on either side of a galvanic barrier
- Complex loop filter with high rejection
- Inrush current limitation
- Alarms & protections: under-voltage, over-voltage, over-current, …
- Multiple outputs with voltage sequencing
- Low output voltage (synchronous rectifier)
- Power-up, power-down control
- Estimate output current without current sensor
- Complex topologies (e.g. resonant converters)

Thank to the flexibility of digital solution

Controllers

Controller component features => Mixed-mode IC

- Non-volatile memory
- High speed ADC with differential inputs
- DAC
- PLL
- Glue logic
- Serial data communication module
- Digital fast regulation engine
- Digital PWM generator
- Supervision & system management µC
- Timers, watchdog
- Debug functions
- Low pin count

Thales Alenia Space ETCA

Ref : ESCCON 2011. Date : 15 March 2011.

For distributed Power supply : POL

- Key technologies for supplying digital IC (FPGA, mass memory, ...)
- Good efficiency in small volume and small weight
- More details see ref. 1

POL are already available in IC form

- Linear Technology, intersil
- And some modules

No failure management are included . . .

... How can we improve the integration

Ref 1: Points of Load Converters and distributed power architecture approach - ESA Technology Innovation Day(s), Feb 18th, 2010 - F. Tonicello – M. Triggianese - TEC-EPC, ESA-ESTE

Ref : ESCCON 2011. Date : 15 March 2011.

THALES

Controllers

Point Of Load future integration ...

- As frequency increase, the volume of passive components decrease
- Use of the multilayer LTCC technology for magnetic components
 - Low Temperature Co-fired Ceramics

Objective: co-sintering together different materials for developing complex substrates including both inductive and capacitive functions

- Co-sintering of:
 - magnetic materials (ferrite NiZnCuCo)
 - dielectric materials
 - conductive paths

integrated inductor

Conclusions

We expect a bourgeoning field also in space business

- GaN, ferrites, capacitors and controllers
- All these progress will improve performances and/or cost

As power supply are often "mission critical"

- Innovative solutions must be introduced carefully
- They need costly, lengthy developments and qualifications
- Some improvements imply a "cultural revolution" in system design and industrial practices

We hope that component manufacturers will follow these trends

A good supply chain is key for the business

To push improvement, we must dream !

Thank you to have followed me during these few minutes

Thank you for your attention

